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Fig. 1. Our inverse design optimization algorithm takes as input a target design surface (a) and a weaving topology graph (b), and calculates the planar

freeform ribbon shapes (e) so that the simulated equilibrium weave (c) and final physical prototype (d) best approximate the target surface. Several fabricated

models illustrate how our method allows weaving a variety of double-curved surfaces from planar curved ribbons (f).

Basket weaving is a traditional craft for creating curved surfaces as an

interwoven array of thin, flexible, and initially straight ribbons. The three-

dimensional shape of awoven structure emerges through a complex interplay

of the elastic bending behavior of the ribbons and the contact forces at their

crossings. Curvature can be injected by carefully placing topological singu-

larities in the otherwise regular weaving pattern. However, shape control

through topology is highly non-trivial and inherently discrete, which se-

verely limits the range of attainable woven geometries. Here, we demonstrate

how to construct arbitrary smooth free-form surface geometries by weav-

ing carefully optimized curved ribbons. We present an optimization-based

approach to solving the inverse design problem for such woven structures.
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Our algorithm computes the ribbons’ planar geometry such that their in-

terwoven assembly closely approximates a given target design surface in

equilibrium. We systematically validate our approach through a series of

physical prototypes to show a broad range of new woven geometries that

is not achievable by existing methods. We anticipate our computational

approach to significantly enhance the capabilities for the design of new wo-

ven structures. Facilitated by modern digital fabrication technology, we see

potential applications in material science, bio- and mechanical engineering,

art, design, and architecture.
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Simulation.
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1 INTRODUCTION

Weaving is a fundamental principle for assembling linear material

elements through interlacing to form stable compound 2D or 3D
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Fig. 2. Traditional weaving with straight ribbons mainly employs the biaxial

pattern (a) or the triaxial (Kagome) pattern (b). Non-zero Gaussian curvature

leads to the irregular spacing of ribbons (d,e). Alternatively, topological

singularities allow introducing positive (c) or negative (f) Gaussian curvature

while keeping the spacing more uniform.

structures. Widely observed in nature, for example, in the construc-

tion of bird nests [Hansell and Overhill 2000], weaving is a tradi-

tional craft in many cultures and finds broad application in textiles,

art, decorative objects, household items, or architectural design [Al-

bers et al. 2017; Ayres et al. 2020]. Modern industrial processes use

weaving with novel synthetic materials to produce structures of

unique functionalities and exceptional strength [Lewandowska et al.

2017; Rana and Fangueiro 2015].

Here, we focus on weaving with elastic ribbons to form 3D surface

structures. Commonly referred to as basket weaving, this process

traditionally interleaves straight ribbons in regular patterns with

alternating over- and under-crossings to obtain a stable lattice struc-

ture. Most prominently, the biaxial and triaxial (Kagome) patterns

interleave two resp. three families of parallel ribbons as illustrated

in Figure 2. Topological singularities are added to inject curvature

locally, typically in a few carefully selected locations, for example

to produce corners in a basket (see also Figure 3).

In this paper, we generalize the traditional process of basket weav-

ing using straight ribbons to arbitrarily curved ribbons and show

how this generalization significantly enlarges the range and quality

of attainable shapes. On the other hand, determining the optimal

curved shape of each individual ribbon in a globally coupled woven

structure is highly non-trivial and typically beyond the capabilities

of human designers. We therefore propose a computational design

approach for curved weaving.

Contributions. The core contribution of this paper is a compu-

tational pipeline for the inverse design of woven structures using

curved planar ribbons. The key algorithmic novelty is a multi-stage

optimization method to solve for the freeform 2D rest shape of the

ribbons such that the equilibrium state of their woven ensemble

(a) (b)

Fig. 3. Topological distortions concentrate curvature locally, which can lead

to deviations from the desired target geometry and a "blocky" appearance

when trying to approximate a smooth torus (a) or Klein bottle (b). Artworks

by Alison Martin.

best approximates a given input surface. We show how a novel rib-

bon crossing model allows optimizing the contact forces acting on

interlaced ribbons to improve the stability of the woven structure.

Our approach enables the weaving of complex freeform surfaces

that cannot be handled by any existing method. We validate our

optimization method through a series of physical prototypes that

show excellent agreement with the simulation prediction.

2 RELATED WORK

Our work fits into a recent line of research on fabrication-aware

design [Bermano et al. 2017; Pietroni et al. 2019]. In this section,

we briefly summarize literature that is more broadly related to our

research. We then discuss previous work on weaving in section 3

after we define certain concepts and terminology.

The general goals of fabrication-aware computational design are

to provide effective means for design exploration under constraints

imposed by a chosenmaterial system and / ormanufacturingmethod

and to produce functional objects that optimize user-specified objec-

tives. The design space of such problems often involves geometric,

material, and fabrication parameters.

Numerous research works have proposed inverse design optimiza-

tion approaches to transform or assemble fabricated components to

produce a target design surface. Examples include origami [Dudte

et al. 2016], kirigami [Choi et al. 2019; Jiang et al. 2020], curved

folding [Kilian et al. 2017], zippables [Schüller et al. 2018], auxet-

ics [Konaković et al. 2016; Konaković-Luković et al. 2018], pneumatic

elastomers [Siéfert et al. 2019], or hydrogels [Gladman et al. 2016].

Similar to our work, these methods often combine geometric ab-

stractions of material properties with physical simulation to enable

accurate predictions of the final produced model.

In a similar vein, various curve-based material systems for shape

approximation have been studied in the past. Miguel et al. [2016]

present a computational method for designing wire sculptures fabri-

cated using a 2D wire bending machine. Garg and colleagues [2014]

presented a computational design approach for wiremeshes Ð regu-

lar interwoven elastic threads that are inextensible but allow shear-

ing within the lattice. They show how discrete Chebyshev nets can

be used to design an interactive, optimization-supported design tool
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for approximating freeform surfaces by single wiremesh patches.

Sageman-Furnas et al. [2019] propose a more general approach

based on poly-vector fields that can also handle singularities to

increase the range of attainable shapes. The works of [Guseinov

et al. 2017] and [Pérez et al. 2017] presented an actuated system that

has carefully optimized curve elements embedded onto a stretched

fabric and deploys towards a desired target shape as the elastic

energy of the fabric is released.

The design and fabrication of curve networks on surfaces have

been studied by [Chen et al. 2016; Pérez et al. 2015; Zehnder et al.

2016]. In these works, discrete curve representations are used to

simulate and optimize the layout of structural or ornamental curves

on a surface that can be 3D printed as a monolithic structure. Situ-

ated between sheet- and rod-based systems, [Malomo et al. 2018]

build upon this work and present an inverse design method to op-

timize the layout and geometry of spiral elements to conform to a

quad-mesh representation of the design surface. Elastic curve mod-

eling also finds application in meshing. For example, [Campen and

Kobbelt 2014] propose an interactive method for designing quad

mesh layouts by optimizing dual loops embedded in the surface

modeled as Euler elastica.

Deng and co-workers [2011] studied curve networks on freeform

surfaces at the architectural scale. They relate certain advantages in

fabrication and assembly to geometric curve properties. In particular,

curves that follow geodesics, lie in planes intersecting the surface,

or can be composed of circular arcs are shown to be beneficial for

construction. In our setting, we are not limited to specific geometric

sub-classes of curve networks and directly optimize the curvature of

ribbons while taking into account their elastic deformation behavior.

3 WEAVING

We assume our ribbons are cut from flat, flexible material of con-

stant thickness1. We further expect that the material is significantly

thinner than the width of a ribbon so that ribbons easily twist and

bend along their weak axis but prohibit significant bending along

their stiff axis.

Figure 2(a,b) shows the two predominant weaving patterns, the

biaxial and the triaxial (Kagome) weaves. These patterns consist of

two or three families of parallel curves at constant spacings. Ribbons

form stable weaves through interlacing, alternating between over

and under crossings [Behera and Hari 2010]. This alternation causes

the ribbons to bend in such a way that they exert compressive forces

onto each other, which induces sufficient friction forces to hold the

ribbons in place.

3.1 Weaving with Straight Ribbons

Planar weaves with straight ribbons based on the biaxial or triaxial

pattern can be deformed relatively easily to approximate developable

surfaces, as this mainly induces deformations of the ribbons along

their weak axis. The ribbonswill then approximately follow geodesic

curves on the surface [Pottmann et al. 2010].

1Here we only consider ribbons of constant thickness as these can be cut easily from
planar sheet material. Our algorithm, however, in principle supports varying material
thickness.

(a)

(c)

(b)

Fig. 4. For a pre-defined topology (a), weaving with straight ribbons can

incur significant twisting and buckling (b), which leads to a large deviation

from the desired target surface. Our optimized curved ribbons (c) assume

an equilibrium state that closely approximate the target.

When moving towards surfaces with non-zero Gaussian curva-

ture, the regular pattern gradually distorts as ribbons follow the

deforming geodesics, and variations in the spacing of neighboring

ribbons emerge (Figure 2(d, e)). As curvature increases, two neigh-

boring ribbons can eventually collide. To avoid interpenetration and

maintain even spacings, we must free the ribbons from following

geodesics. For straight ribbons, this means twisting so that the flexi-

ble bending deformation mode can produce geodesic curvature (not

just normal curvature). Such twisting, however, is problematic for

weaving, mainly because ribbons no longer lie flat upon each other

at crossings. This leads to undesirable local deformations, potential

stress concentrations in the ribbons, and insufficient frictional con-

tact, which can compromise the stability and visual appearance of

the woven structure (see also Figure 4).

An alternative approach to allow deviating from developable sur-

faces is to introduce topological distortions into the weaving pattern.

These singularities allow restructuring the ribbons locally, so rib-

bons can switch from one family to another. Effectively, this injects

curvature locally into the woven structure as illustrated in Figure 2(c,

f). In traditional weaving, the placement and type of singularity

are typically determined empirically based on the intuition and ex-

perience of the designer [Ayres et al. 2018]. Recently, Vekhter and

colleagues [Vekhter et al. 2019] proposed an optimization algorithm

for straight ribbon weaving. Using a suitable discretization of the

geodesic equation, they compute geodesic foliations on branched

covers of the design surface to produce a complete weaving pattern

with automatically placed singularities. While this is an effective

solution for straight ribbons, inverse design with curved ribbons can

no longer rely on geodesic fields and thus requires a fundamentally

different approach.

Direct modeling approaches for straight ribbon weaving have also

been explored, for example using procedural modeling [Kaplan and

Cohen 2003] or shape grammars [Fajar and Indraprastha 2016]. The

work of [Tao et al. 2017] and [Igarashi 2019] presented interactive

systems for novice users to design simple woven geometries based

on explicitly modeled parameter curves.
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Fig. 5. Curved ribbon weaving has been explored in design using manually

drawn ribbon shapes [Schepper and Schepper 2014] (a), and in engineering

[Baek et al. 2020] using parameterized ribbons composed of circular arc

segments (b).

Recent work on deployable beam networks [Panetta et al. 2019;

Pillwein et al. 2020] have connections to weaving in that they also

model networks of bending-active linear elements. In contrast to

weaving, these elements are placed on top of each other rather

than interleaved and are connected explicitly with joints, which are

essential for the structural stability of the deployed structure.

3.2 Weaving with Curved Ribbons

Curved ribbons have been explored in design and engineering as

exemplified in Figure 5. The key idea is to inject in-plane curvature

into the ribbons’ rest shape. As a consequence, ribbons are no longer

constrained to follow geodesic paths on the surface, which provides

more flexibility to build a regular woven structure.

Singularities in the weaving pattern are still required to satisfy

global topological constraints, and they can be helpful to reduce

ribbon curvature if desired (see also Figure 15). However, as we

show in our results, suitably optimized curved ribbons avoid unfa-

vorable local curvature concentrations and generally lead to a much

better approximation of the target shape. In addition, we gain sig-

nificant freedom in the choice of weaving pattern topology, which

is largely decoupled from the geometry of the design surface (see

also Figure 16 and Figure 18).

Previous work on curved ribbon weaving was pioneered by Ak-

leman and colleagues [2009] who presented a projection algorithm

to compute weaving patterns on surfaces based on graph rotation

systems. They show how plain-weavings derived from edge twist-

ing can be converted into 3D thread structures that densely cover

a given manifold mesh. This approach has been applied in [Xing

et al. 2011] to create a large-scale sculpture. A related geometric

strategy has been reported by [Mallos 2009]. These methods are

mostly suited for dense weavings, but do not consider the physical

deformation behavior of ribbons nor the resulting contact forces at

crossings, which are essential in our approach to accurately predict

the equilibrium state of our woven structures.

[Baek et al. 2020] propose a unit cell approach for assembling

woven structures using a parameterized model for curved ribbons.

Each ribbon consists of a combination of straight and circular arcs

of fixed length. Varying the arc radius allows adapting the ribbon

rest shape to improve shape approximation over traditional weav-

ing. They show how elementary shapes such as spheres, ellipsoids

or tori can be created with a manual forward design process. In

contrast, our approach supports arbitrarily shaped curved ribbons

and algorithmically determines their optimal rest shape to solve the

inverse design problem.

Fig. 6. Even after extreme deformations, the optimized woven model settles

back reliably into the predicted equilibrium state.

4 OVERVIEW

A woven structure is a complex coupled system of bending-active

elements. Each ribbon experiences external forces due to frictional

contacts with other ribbons in the weave, which are balanced by

internal forces that arise due to stretching, bending, and twisting

of the ribbons (see also Figure 6). As a consequence, a purely geo-

metric approach, for example projecting a smooth curve pattern

onto the design surface and unrolling each ribbon onto the plane,

in general does not accurately reproduce the input surface. The

internal stresses of ribbons are not taken into account, leading to

deformations of the woven structure, in particular when ribbons

follow curves of high normal curvature on the surface.

To accurately predict the final shape of a woven structure, it

is therefore essential to compute the global equilibrium state of

the interleaved ribbons through physical simulation. This means

that our inverse design algorithm needs to accurately track this

equilibrium state while the ribbons’ planar rest shapes are optimized.

Figure 7 provides a high-level overview of our optimization ap-

proach. Our method takes as input a target design surface 𝑆 given as

a triangle mesh and a graph𝐺 that specifies the weave pattern topol-

ogy. Nodes of𝐺 define ribbon crossings and should be embedded in

the design surface. These initial crossing positions provide informa-

tion about the design intent for the weave, but will change during

the optimization. The traditional challenge of designing weaving

pattern 𝐺 for straight ribbons is the final shape’s reliance on the

careful insertion and adjustment of singularities. Allowing ribbons

to be curved minimizes the weaving topology’s influence on the

shape, freeing us to either generate graphs automatically with mesh-

ing tools or craft them manually to achieve artistic goals (see also

Figure 8 and Figure 16). The graph𝐺 is automatically converted into

ribbons following the approach outlined in the supplemental mate-

rial. We assume only two ribbons cross at any location and compute

the over-under relationship using a breadth-first search [Mallos

2009].

Our optimization starts from a simple initialization with straight

ribbons. Figures 4 and 7 illustrate how these initially straight rib-

bons exhibit severe buckling and twisting, which would lead to an

unstable weave with a large deviation from the target design surface.

The optimized curved ribbons closely approximate the target with

low elastic energy, leading to a more stable woven structure.

The final stage of the pipeline analyzes contact forces at crossings.

If we detect ribbons that are no longer in contact at a crossing, we

ACM Trans. Graph., Vol. 40, No. 4, Article 127. Publication date: August 2021.



3D Weaving with Curved Ribbons • 127:5
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Fig. 7. Our inverse design optimization takes as input a target surface and weaving topology graph and produces as output the 2D cutting paths of the ribbons.

The optimization is initialized with straight ribbons and jointly solves for their planar curved rest state and the final equilibrium shape to best approximate the

target surface. The final optimization stage of contact forces is only applied if ribbon separation is detected.
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Fig. 8. Input (a), predicted simulation (b), final fabricated model (c), and

optimized 2D ribbons (d). Ribbons of the same color originated from a

single ribbon that has been split to fit the dimensions of the laser cutting

machine and to avoid in-plane self-intersections. These ribbon components

are reconnected in the final weaving. The dots indicate ribbon crossing

locations. The input topology graph in (a) has been computed automatically

using the method of [Jakob et al. 2015].

further optimize the ribbon geometry to ensure stable contacts at

the cost of a potentially higher-energy weave or larger deviations

from the target surface. Alternatively, we can iteratively modify

the over-under relation at selected crossings to reduce separation

contact forces, trading off the regularity of the alternation pattern

for improved weaving stability (see also Figure 14).

Our inverse design optimization is based on the method proposed

by Panetta et al. [2019] for optimizing X-shells Ð pin-jointed de-

ployable gridshells composed of straight elastic beams. We briefly

summarize this approach in section 5 where we introduce our new

extended representation for curved ribbon weaving. In section 6, we

discuss our formulation of the optimization objective function and

introduce new terms specific to our setting. section 7 then presents

our multi-stage numerical solver to minimize this objective. We

present simulated and fabricated examples in section 8, where we

quantitatively analyze our simulation’s predictive accuracy.

5 REPRESENTATION

We simulate the deformation behavior of ribbons using the discrete

elastic rod model proposed in [Bergou et al. 2010, 2008]. Each rib-

bon is modeled as a collection of rod segments defined between

pairs of consecutive ribbon crossings. A rod segment is represented

as a polyline with vertex positions in 3D and an adapted material

frame on each edge defining the ribbon orientation. By maintaining

reference frames adapted to the polyline edges, this ribbon orien-

tation is expressed with a single material frame angle variable 𝜃 .

To model the coupling of ribbons at their crossings, we design a

special crossing representation that ensures crossing ribbons share

a contact point with compatible local orientations by construction

and therefore circumvents difficult nonlinear interpenetration con-

straints (see Figure 9). A crossing’s configuration, defined by its

angle, position, and orientation variables, is used to set the endpoint

positions and ribbon orientations of the incident terminal edges of

each participating rod segment.

We augment the straight beam model of [Panetta et al. 2019]

by introducing in-plane curvature to the rest configuration of rib-

bons. These additional design variables are stored as turning an-

gles 𝜅 (integrated curvature) at each vertex of the rod polylines.

Consequently, the simulation variables in our framework are the

independent variables for rod position and angle 𝜃 (those not set by

crossings) combined with the crossing variables in the deformed

state. The design variables that we optimize for are the lengths 𝑙 and

discrete curvature values𝜅 of the ribbons in the planar rest state (see

Figure 9). We aggregate all simulation variables in a vector x and

all design variables in a vector p. Please refer to our supplemental

material for more details of the representation.
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2D rest state

simulation variables

design variables
initial straight ribbon

optimized final ribbon

segment

crossing

vertex angle

3D equilibrium state

optimization

vertex 

position

material 

frame angle

crossing 

angle

crossing

orientation

edge length

segment length

crossing

position

Fig. 9. A ribbon is composed of several elastic rod segments, each repre-

sented by a polyline composed of edges and vertices. The 2D rest state

of each segment is implicitly parameterized by a length per segment that

is distributed uniformly to each edge and a turning angle per vertex that

defines the discrete curvature of the polyline. These length and curvature

values constitute the design parameters that are optimized. The simulation

variables are vertex positions and material frame angles of each rod as well

as the position, orientation, and angle of each crossing. These variables

determine the 3D equilibrium state of the weave.

Ribbon Crossings. Even though the joint model proposed for X-

shells in [Panetta et al. 2019] was originally designed for pin-jointed

straight bars, we found it well suited to model curved weaving cross-

ings. This might seem counter-intuitive at first because we want to

allow ribbons to slide along each other during the optimization to

reduce elastic energy, while an X-shell is composed of beams con-

nected with fixed pin joints. However, sliding does occur naturally in

our setting, because the lengths of rod segments between crossings

are free variables in the optimization: if advantageous to reduce the

energy, one segment can lengthen while its adjacent segment can

shorten, effectively letting a ribbon slide along its counterpart at the

crossing. By construction, such sliding cannot lead to cross-overs, as

the topology of𝐺 is fixed and the segment lengths are constrained to

remain above a minimal positive value. Another distinct advantage

of this model is that ribbons are implicitly constrained to lie flat

on top of each other at crossings, which generally leads to more

stable weaves. To account for the thickness of ribbons and their

alternating over/under crossings, we extend the X-shell joint model

to apply a positional offset to the participating centerlines.

6 OPTIMIZATION OBJECTIVE

In this section, we formulate the objective function of our inverse

optimization for curved weaving. We use a reduced notation here

to simplify the exposition. A detailed and more implementation-

friendly description is provided separately in the supplemental ma-

terial. Our algorithm is defined as a nested optimization that in-

terleaves design parameter improvements with equilibrium solves

for fixed design parameters. We first discuss the objective terms of

these two optimizations, then present our multi-stage numerical

solver in section 7.

6.1 Equilibrium Objective

As mentioned above, the planar rest states of the ribbons are defined

by per-segment length variables and per-vertex in-plane turning

angles that are stored in the design parameter vector p. For a fixed

design p, we solve for its equilibrium state x∗p by minimizing the

elastic energy of the ribbons:

x∗p = argmin
x

𝐸 (x, p) +𝑇 (x), (1)

where 𝐸 (x, p) = 𝐸𝑠 (x, p) + 𝐸𝑏 (x, p) + 𝐸𝑡 (x, p) sums the stretching,

bending, and twisting terms of all rod segments, respectively, as

defined in [Bergou et al. 2010, 2008]; see also supplemental material.

𝑇 (x) is a surface closeness term defined below in Equation 3 that

is added here with a low weight 𝛽𝑇 = 10−5 to factor out the global

rigid motion.

Note that this optimization is not an accurate physical simulation

for arbitrary woven structures. Since the rest length and curvature

parameters are fixed during this solve, we are effectively computing

the equilibrium under additional rotational pin constraints at each

crossing (like in X-shells) that can hold the ribbons in artificial high-

energy configurations. However, as mentioned above, ribbon sliding

is implicitly handled in the outer design optimization discussed

below, ensuring any artificial forces applied by these pin constraints

effectively vanish in our optimized designs.

6.2 Design Parameter Objective

The goal of the design optimization is to find optimal parameters p

so that the resulting equilibrium weave x∗p has low elastic energy, is

physically meaningful, and best approximates the target surface 𝑆 .

We formulate this objective as

𝐽 (p) = 𝐸 (𝑥∗p, p) +𝑇 (x
∗
p) +𝐶 (x

∗
p) + 𝑅(p), (2)

where 𝐸 measures the elastic energy at equilibrium, 𝑇 denotes a

surface closeness term, 𝐶 promotes beneficial contact forces, and 𝑅

is a regularization term.

Closeness Term. We measure the distance between the woven

structure and the target design surface as

𝑇 (x) =
𝛽𝑇

𝑙20
| |xpos − 𝑃𝑆,𝐺 (xpos) | |

2
𝑊 , (3)

where xpos = [x𝑟 x𝑐 ] ⊂ x extracts the positions x𝑟 of the rod cen-

terline vertices and the locations x𝑐 of ribbon crossings from the

simulation variables x. The function 𝑃𝑆,𝐺 (x𝑟 ) computes the pro-

jection onto 𝑆 , while 𝑃𝑆,𝐺 (x𝑐 ) returns the initial crossing locations

specified in𝐺 (that are embedded in 𝑆). To avoid scale dependencies,
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(a) (b) (c)

Fig. 10. The surface closeness term𝑇 controls the alignment with the input

surface (a) and can be adapted with spatially varying weights. Uniform

weights do not preserve the features well around the ears and nose of the

cat (b). A more satisfactory result is obtained when increasing the weights

for the locations indicated by the white spheres by a factor of 100 (c).

we normalize the closeness term with the length 𝑙0 of the bounding

box diagonal of the target surface. The weight 𝛽𝑇 controls the trade-

off between surface fitting and the other performance considerations

of the final weave. The diagonal matrix𝑊 allows specifying the

relative importance of accurately approximating different regions

of the input surface (see also Figure 10).

Contact Term. As discussed above, a woven structure gains struc-

tural stability through frictional interactions between ribbons at

their crossings. A stable weave thus requires ribbons to push against

each other at their contact point and experience low tangential

forces that can be compensated by static friction. So far, the op-

timization does not explicitly consider contact forces, which can

result in the final physical ribbons sliding or even separating at

their crossing, as illustrated in Figure 11(a). To address this issue,

we introduce an objective term to minimize tangential forces and

promote compressive contact forces at ribbon crossings. section 7

will describe an alternative approach to improve contacts based on

flipping the over-under relation at certain crossings.

Consider a crossing of two ribbons 𝑟𝑖 and 𝑟 𝑗 . We can compute

the force of ribbon 𝑟𝑖 acting on 𝑟 𝑗 at their crossing as the derivative

of the elastic energy with respect to the crossing position c𝑖 𝑗 :

f𝑖 𝑗 =
𝜕

𝜕c𝑖 𝑗
𝐸𝑟 𝑗 (x, p), (4)

where 𝐸𝑟 𝑗 sums the elastic energy of only the ribbon segments

belonging to 𝑟 𝑗 . From f𝑖 𝑗 , we can extract the normal separation force

as

𝑓 𝑛𝑖 𝑗 := 𝑠𝑖 𝑗n𝑖 𝑗 · f𝑖 𝑗 .

Here, 𝑠𝑖 𝑗 ∈ {−1, 1} denotes whether ribbon 𝑟𝑖 passes over (+1) or

under (−1) ribbon 𝑟 𝑗 with respect to the outward pointing crossing

normal n𝑖 𝑗 . Consequently, positive values of this scalar force mea-

sure correspond to forces pulling the ribbons apart. The squared

tangential force magnitude can be computed as
(

𝑓 𝑡𝑖 𝑗

)2
:= ∥f𝑖 𝑗 ∥

2 −
(

𝑓 𝑛𝑖 𝑗

)2
.

Finally, our contact optimization term is formulated as:

𝐶 (x, p) :=
1

2

∑

𝑖 𝑗

𝑤𝑛

(

𝑓 𝑛𝑖 𝑗 − 𝜖𝑛

)2

+
+𝑤𝑡

(

𝑓 𝑡𝑖 𝑗

)2
,

Separation Force Magniture

-5 -4 -3 -2 -1 0 1 1e-5

Tangential Force Magniture

0.5 2.01.51.0 1e-4

without contact term with contact term

0.0 2.5

(a)

(b)

2.5e-4

0

1e-5

0

compression separation

Fig. 11. Without contact force optimization, ribbons can have large tan-

gential forces at crossings (a) that cannot be compensated by friction, or

even positive separation forces in the final equilibrium state (b). With the

contact term, a more stable weave without ribbon separation is found. The

plots show density histograms of force magnitudes. Arrows indicate the

force vectors at crossings separated into tangential (a) and normal (b) com-

ponents. At equilibrium, the forces exerted by ribbon 𝑟𝑖 on 𝑟 𝑗 are balanced

by opposite forces exerted by ribbon 𝑟 𝑗 on 𝑟𝑖 in our crossing model.

where (·)+ clamps its argument to positive values, 𝜖𝑛 is an activa-

tion threshold for the separation force penalty, and𝑤𝑛 and𝑤𝑡 are

weights for the normal and tangential terms, respectively. Note that

setting 𝜖𝑛 slightly negative will promote a strictly compressive force

rather than just eliminating tensile forces. As shown in Figure 11, the

contact term can significantly reduce tangential forces and avoids

the separation of ribbons at crossings.

Regularization Term. We introduce additional regularization on

the design parameters to better control the final shape of ribbons.

In particular, we favor short and smoothly curving ribbons by mini-

mizing length and curvature variation:

𝑅(p) = 𝛽𝑙 ∥p𝑙 ∥1 +
𝛽𝜅

2
p𝑇𝜅 𝐿p𝜅 (5)

Here p𝑙 ⊂ p represents all per-segment length parameters, while

p𝜅 ⊂ p accumulates all per-vertex turning angles of the ribbons’

rest states. 𝐿 is a 1D uniform Laplacian matrix, which means the

smoothing term is proportional to the total squared difference in

turning angle across all ribbon edges. The weights 𝛽𝑙 and 𝛽𝜅 are

design controls exposed to the user. Figure 12 illustrates the effect

of regularization.

7 MULTI-STAGE SOLVER

The objective function Equation 2 defines a challenging nonlinear,

nonconvex optimization problem. Rather than enforcing the opti-

mality conditions for Equation 1 as a nonlinear equality constraint
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Fig. 12. The regularization terms help stabilize the optimization and improve

the quality of ribbon shapes (a). Without curvature regularization, the

optimization favors piecewise straight ribbons with sharp kinks that might

be undesirable (b). Without length regularization, ribbons can become very

curvy and self-intersecting (c). The bottom images show the planar ribbon

rest states.

in a large simultaneous optimization for x and p, we opt for a re-

duced optimization over p alone wherein the forward equilibrium

minimization problem is solved in the inner loop for each candidate

design p. We perform exact, analytic first- and second-order sen-

sitivity analysis to account for the changing equilibrium state x∗p
when computing first and second derivatives of 𝐽 with respect to

p (see also supplemental material Section 2 for more details). This

ensures surface deviations and crossing forces considered by the

optimizer are always physically meaningful and that the weave is

in stable equilibrium, which is not guaranteed merely by satisfying

the force balance constraint.

This nested optimization relies on being able to robustly and

quickly solve the equilibrium problem for each p, which turns out

to be problematic for the poor designs often considered at early

optimization iterations. As one of the key goals for our design tool is

not requiring the user to provide good initial ribbon rest curvatures

and lengths (which are generally difficult to find manually), we

propose a simplified initial optimization stage that rapidly converges

to a reasonable design from a naïve initializationÐstraight ribbons

with segment rest lengths taken from the Euclidean lengths of edges

in 𝐺 (see also Figure 7). Furthermore, we found it beneficial for

convergence to include the highly nonlinear contact term only after

an optimal design is found for the fitting objective. We therefore

propose a three-stage optimization algorithm.

Stage I. The initial woven structure with straight ribbons tends

to be poorly behaved and has numerous barely stable equilibria

featuring twisted and buckled ribbons. This slows down the equi-

librium solve and thwarts sensitivity analysis as a small change to

the design parameters can cause ribbons to pop from one buckled

configuration to another, making the objective discontinuous.

However, we note that by dropping the contact and surface close-

ness terms from 𝐽 (p), we obtain a simplified objective where the

simulation variables appear only in the elastic energy term. Hence,

if we optimize just this objective over both x and p without explic-

itly enforcing equilibrium, the result will be a smooth, low-energy

structure in stable equilibrium. To ensure this low-energy structure

is also close to the target surface, we add pin constraints holding

the crossings at their original positions on the target surface (ef-

fectively applying additional artificial forces). Crucially, we avoid

solving equilibrium problems for poorly behaved designs in this

formulation. Stage I of the optimization therefore solves:

x𝐼 , p𝐼 = argmin
x,p s.t. p𝑙>𝜖
x𝑐=𝑃𝑆,𝐺 (x𝑐 )

𝐸 (x, p) + 𝑅(p). (6)

We constrain the segment lengths p𝑙 to remain above a small positive

threshold 𝜖 to avoid ribbon cross-over. This optimization yields a

first significant change in the ribbon rest lengths and curvatures

as illustrated in Figure 13. Unfortunately, x𝐼 is only an equilibrium

under the additional forces artificially holding ribbon crossings in

place; once we release these constraints, the weave will deviate

from the target surface. However, the true equilibrium x∗
p𝐼

is now

efficiently computable and differentiable.

An alternative initialization method is to project the edges of the

input topology graph onto the target surface and assign the geodesic

curvature of the projection curves to the ribbons. However, we find

that this method neither speeds up nor improves the subsequent op-

timization because the feasible solution space of Equation 6 contains

this initialization. Moreover, our current initialization method does

not depend on the mesh quality of the target surface. Our framework

can also find optimal woven structures for different objectives other

than shape approximation.

Stage II. Given the solution of stage I, we now remove the con-

straints on crossing positions and integrate the full surface closeness

term:

p𝐼 𝐼 = argmin
p s.t. p𝑙>𝜖

𝐸 (x∗p, p) +𝑇 (x
∗
p) + 𝑅(p) . (7)

This allows the ribbon crossings to move freely and ribbons to slide

along each other to reduce the equilibrium energy as illustrated

in Figure 13. We note that this objective indirectly encourages the

reduction of tangential forces applied by the imaginary pins in our

simulation model since any work done by these forces increases 𝐸.

Stage III. At the end of stage II we evaluate the contact forces Equa-

tion 4 acting on each ribbon crossing. If we observe a separation

of ribbons, we run the final stage that now uses the full objective

function Equation 2 including the contact term:

p∗ = p𝐼 𝐼 𝐼 = argmin
p s.t. p𝑙>𝜖

𝐸 (𝑥∗p, p) +𝑇 (x
∗
p) +𝐶 (x

∗
p) + 𝑅(p). (8)

Figure 13 shows a typical example of the convergence behavior of

our solver. As can be observed, stage I quickly progresses towards

a solution with good surface fit and significantly reduced elastic

energy as the rest curvature of the ribbons increases (green curve

in (d)). However, once the crossing position constraints are released,

the true equilibrium state of the structure can still deviate from the

target surface. In this example, the negative mean curvature region
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Fig. 13. Typical convergence behavior of our multi-stage optimization. (a) shows the objective function as a normalized stacked graph to indicate the relative

importance of each objective term. The gaps in stage II correspond to weight changes in our weight scheduling scheme. (b,c) show physical and geometric

quantities computed for the 3D equilibrium state of the weave without positional constraints on crossing nodes. The color of the structures in (b) encodes the

distance to the target surface, which is computed relative to the bounding box diagonal. Avg. Dist. to Nodes indicates how ribbon crossings evolve from the

initial position specified in the topology graph. (d) shows how geometric quantities of the 2D rest state of the ribbons change during the optimization, i.e. the

aggregate length and in-plane curvature of the ribbons as well as their total variation of curvature.

of the target surface is not well approximated at the end of stage

I. In stage II, we apply a 3-phase weight scheduling scheme where

an initially high surface attraction weight is progressively reduced.

Specifically, we set 𝛽𝑇 of Equation 3 in the equilibrium objective

Equation 1 to [100, 10−3/2, 10−5] for the three phases as indicated

by the gaps in stage II in (a). These empirically selected values

worked well in all our examples. As can be observed, the distance

of the woven structure to the target surface decreases significantly

in this stage. Stage III generally leads to only minor changes in

ribbon geometry. Nevertheless, the reduction in tangential forces

and separation forces can be significant.

Flipping Ribbon Crossings. The continuous contact optimization of

stage III is not always successful or efficient at eliminating separation

forces from all ribbon crossings while keeping the equilibrium state

sufficiently close to the target surface. We offer a second, alternative

strategy to improve the stability of the weave by altering the over-

under relations at crossings.

Initially, any two consecutive crossings along a ribbon have alter-

nating over-under relations. This regularity is in general conducive

to stable crossings and is often preferred for reasons of aesthetics

and ease of weaving. However, for certain weaving topologies and

target shapes, deviating from the regular pattern can help avoid

ribbon separation at crossings.

Our algorithm is very simple: We first detect all crossings with

separation forces. Then we flip the over-under relation for these

crossing and re-run the equilibrium solve. If we still observe separa-

tion forces at crossings, we iterate. Intuitively, the separation forces

will become compressive forces after the switch of the over-under

relation. However, this is not necessarily the case due to the global

coupling of the elastic forces. Therefore, we solve for the equilib-

rium state with the flipped crossings and recompute the contact

forces at all crossings; the algorithm only proceeds with the flipping

operation if it actually decreases the total separation force magni-

tude. This greedy algorithm is not guaranteed to terminate, so we

limited the number of iterations and provide additional user control

to interactively select ribbons for flipping if desired. Figure 14 shows

an example where our method successfully resolved all ribbon sep-

aration issues as well as a failure case. At difficult crossings where

neither Stage III nor flipping can remove the separation forces, we

can stabilize the ribbons with pins as a practical remedy.

ACM Trans. Graph., Vol. 40, No. 4, Article 127. Publication date: August 2021.



127:10 • Yingying Ren, Julian Panetta, Tian Chen, Florin Isvoranu, Samuel Poincloux, Christopher Brandt, Alison Martin, and Mark Pauly

(a) (b) (c)

(d) (e)

Fig. 14. Iterative Contact handling: After stage II of the optimization, we

observe significant separation forces (a,d). As an alternative to contact opti-

mization, we show the result of the flipping procedure after two iterations

(b) and three iterations (c), where all separation forces have been eliminated

for the Klein bottle. For the bunny, the algorithm fails to find a solution

eliminating all separation forces (e).

8 RESULTS AND DISCUSSION

We have integrated our inverse optimization algorithm into an end-

to-end computational design framework for curved weaving. Please

refer to the supplemental material for a detailed description of the

implementation, corresponding source code, as well as all parameter

settings to reproduce the results shown in the paper.

In order to produce physical models, we integrate the length and

curvature angles found by our optimization algorithm to compute

vector curves that define the boundaries of the planar curved ribbons.

These can directly serve as input to digital fabrication machines or

be printed on paper to be cut by hand. In all our examples, a laser

cutter (Trotec Speedy 400) is used to fabricate the ribbons using

polyethylene (PETE) sheets (Plastic Shim Pack DM1210, Partwell

Group, United Kingdom). This material is relatively smooth and

leads to low friction between the ribbons in the weave (see also

Figure 6 and accompanying video). We manually weaved all the

shown models using the visualization web application provided

in supplemental material to guide the incremental interlacing of

ribbons. Ribbon crossings at open boundaries are connected with

pins to allow rotation around the contact vertex as modeled in

our optimization. We also reconnect the endpoints of closed-curve

ribbons during weaving (see Figure 8). Weaving time depends on

model complexity and the weaver’s experience. For example, the

owl (Figure 4) took a novice weaver less than two hours, and the cat

Fig. 15. Singularities can be used control the weaving pattern and reduce

in-plane curvature of ribbons in highly curved regions of the design surface.

They can also be required to satisfy global topological constraints.

(Figure 10) and bunny (Figure 8) took around three to four hours. We

found the weaving process engaging and envision people weaving

interesting 3D shapes at home as a recreational activity, analogous

to puzzles or model building.

Figure 1 shows a series of physical prototypes that we have op-

timized and fabricated using our approach with some statistics

provided in Table 1. Please also refer to the supplemental material

for additional visualizations, 3D models, and complete 2D cutting

plans for all of the results shown in the paper.

The Klein bottle (see also Figure 7 and Figure 14) is an example of

a complex double-curved surface that cannot be well approximated

with straight ribbons only as illustrated in Figure 3(b). Notably, our

result has a perfectly regular topology without any singularities.

For aesthetic reasons, we adapted the ribbon width automatically

to match the inter-ribbon spacing. Our simulation framework accu-

rately models the varying ribbon width. In this weave, each ribbon

forms a closed loop. Curiously, even though the Klein bottle is

non-orientable, none of the ribbons is a Möbius strip. Ribbons loop

around the surface multiple times to avoid a discontinuous jump in

orientation at their connection.

Topology and Geometry. As mentioned before, traditional weav-

ing with straight ribbons requires topological singularities in the

weaving pattern to approximate curved surfaces. These often lead to

undesirable local curvature concentrations in the woven structure

(Figure 3). Our optimized curved ribbons do not suffer from this

deficiency and can in general operate on a much broader range of

weaving topologies.

Surfaces with Euler characteristic zero such as the torus and

Klein bottle, for example, do not require any singularities to be

approximated accurately and smoothly. On the other hand, we can

use singularities to control the weaving pattern or reduce in-plane

curvature of ribbons in highly curved regions of the design surface

as illustrated in Figure 15. Importantly, any geometric distortions

caused by topological singularities can be compensated by ribbon

rest curvature, so that a smooth appearance is preserved.

The flexibility to optimize different weaving patterns is demon-

strated in Figure 16, where biaxial and triaxial weaving patterns are
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(b)

(d)

(a)

(c)

Fig. 16. The same input target shape (a) optimized for different weaving

patterns: a hand-designed triaxial input topology graph (b) and two auto-

matically computed graphs for a triaxial (c) and biaxial (d) weaving pattern.

The manually placed white spheres indicate a 100× higher closeness term

weight to enforce better feature preservation at the bill and tail.

used on the same input target model. We manually created a triaxial

input topology graph using Rhinoceros 3D [McNeel et al. 2010].

The auto-generated graphs are produced by first triangulating (for

triaxial pattern) or quadrangulating (for biaxial pattern) the input

surfaces using Instant Meshes [Jakob et al. 2015]. Then a graph

node is created at each mesh edge midpoint, and these nodes are

connected in cyclic order around each face. Here we illustrate also

how to employ spatially varying fitting weights to control feature

preservation of the final weave (see also Figure 10).

Figure 18 highlights an additional benefit of curved ribbons: for a

fixed weaving topology, we can continuously blend between shapes,

here illustrated by a cat-to-sphere morph. When using straight

ribbons, this geometry change could only be accommodated by

introducing topological singularities, leading to localized curvature

concentrations and discontinuous jumps in the morphing sequence.

Figure 19 illustrates the potential of our method for applications

in architecture or furniture design. Compared to purely geometric

methods, our physics-based simulation framework offers additional

advantages. For example, we can easily integrate and account for

additional constraints, e.g. gravitational or other loading, that can

be relevant in such applications.

8.1 Validation

To systematically evaluate the accuracy of our inverse design algo-

rithm, we scanned all our physical prototypes using photometric re-

construction provided by the Agisoft Metashape software. Figure 20

shows on some examples how our simulation accurately predicts the

final fabricated shape. The complete set of quantitative comparisons

is provided in the supplemental material. As can be seen in Table 1,

the maximal deviation of the physical model from the input design

surface is between 1% and 4% of the bounding box diagonal. These

measurements confirm that our computational framework can be

used for exploring design alternatives before fabrication, avoiding

time-consuming and costly prototyping iterations.

(a)

(c)

(b)

Fig. 17. A failure case for our approach. When trying to approximate the

input surface shown in (a) the weave settles into an equilibrium state far

from the desired target (b). In particular, ribbons traversing across the model,

as the one highlighted on the right, exert high bending forces, pulling the

structure open. Only when explicitly fixing the boundary curve can we

achieve a faithfully approximation (c).

8.2 Limitations

A general limitation of our approach is that curved ribbons are less

suited for certain natural materials that are extensively used in tra-

ditional basket weaving, such as wood or bamboo. These materials

have clearly defined fiber directions that lead to highly anisotropic

bending behavior. Our approach is more suited for materials such

as paper, plastics, or composites, where bending behavior is more

isotropic.

Another inherent limitation is that curved ribbons, in general,

cannot be packed without gaps, leading to potential waste when cut-

ting ribbons from sheet material. Long and curved ribbons also tend

to exceed the laser cutting machine’s dimensions and have in-plane

self-intersections. Hence, we need to split the ribbons for fabrica-

tion (see also Figure 8). We currently perform both the splitting and

packing processes manually. Algorithms to optimize the decompo-

sition and arrangement of ribbons for fabrication can mitigate this

drawback [Limper et al. 2018].

Figure 17 shows a failure case of our approach. In particular

for surfaces with large free boundaries, the elastic forces of the

ribbons can sometimes lead to close-to-isometric deformations of

the equilibrium state away from the desired target surface. Such

cases either require additional constraints, e.g. in form of a rigid

boundary, changes to material properties, e.g. reducing the bending

stiffness of ribbons, or a re-design of the ribbon topology.

Some input geometries, in particular with complex boundaries or

thin features, can cause difficulties for our optimization. For example,

the ear of the bunny or the tail of the bird in Figure 20 show relatively

large deviations from the input surface. More accurate results could

potentially be achieved with a denser weaving graph, but we did

not verify this conjecture yet.

We do not explicitly simulate the effect of friction and instead

rely on the minimization of tangential forces at ribbon crossings

to ensure stability of the weave. Our contact optimization cannot

always guarantee that ribbons experience only compressive forces

at their crossings, i.e., that the two ribbons always push against

each other. This can cause the final equilibrium shape to deviate
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(a)

(b)

(c)

(d) (e) ()

Fig. 18. A morphing sequence from cat to a sphere. The graph topology (b) is kept fixed as the input geometry (a) is smoothly morphed towards the sphere.

For each deformed target state, we run our optimization to compute the corresponding curved weavings (c). For a single highlighted ribbon (d,f) we illustrate

how the 2D rest geometry changes continuously in the morphing sequence (e).

(a) (c)(b)

Fig. 19. Application case studies for optimized curved weaving: A pavilion (a), a roof structure (b), and furniture (c).

from the simulated prediction. In our current system, we handle

this issue by providing visual feedback to the user that highlights

all crossings with tensile forces so appropriate editing actions can

be taken. We found, however, that such cases are rare and that the

resulting inaccuracies were generally not too significant.

9 CONCLUSION AND FUTURE WORK

Curved ribbons offer a rich design space for weaving 3D surface

structures. Even though often not obvious on the final woven model,

the geometry of the curved ribbons can be highly complex and

unintuitive. Effective design thus requires advanced computational

methods to optimize ribbon geometry and accurately predict the

final equilibrium structure. Our inverse design algorithm provides

a solution to this challenging problem, opening the door to the

entirely new applications of woven geometries for industrial and

consumer products, artistic installations, or architectural designs,

for example.

An exciting path for future work is to further investigate the

interplay between topological singularities and ribbon curvature.

Currently we assume the singularity structure is fixed and provided

as input. However, allowing singularities to be dynamically intro-

duced or removed, for example driven by user input or to reduce

stress in the structure, could allow for a more powerful design explo-

ration process.We also did not yet investigate how to create effective

weaving instructions, which will be important especially for novice

users. Finally, actuated curved ribbons could be an interesting way

to design shape-shifting structures.
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Input Design Surface Optimization Result Physical Model Deviation of Scan to Design Surface

max: 0.033

max: 0.07

max: 0.05

max: 0.03

max: 0.025

max: 0.04

0

max

Fig. 20. Validation of our inverse design pipeline with physical prototypes. All models have been scanned using photometric stereo. Max deviation is indicated

as a fraction of the bounding box diagonal.
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Table 1. Statistics of the examples shown in the paper. # Crs is the number of ribbon crossings and # Rib. shows the number of ribbons in the weave (in

parentheses, the number of physical ribbons after splitting to fit into the laser cutter). |x | is the number of DoFs in the 3D equilibrium simulation, |p | is the

number of DoFs of the planar ribbon rest states, i.e. the design variables we optimize for. Timings for stage I-III and Total are in (hour:)min:sec measured on a

Linux workstation with a 64-Core AMD Ryzen Threadripper 3990X Processor and 128GB of RAM. We allocate 6 threads to our optimization solver. Sim. Fit and

Scan Fit measure the maximum distance relative to the model bounding box between the target surface and the simulated weave and scanned prototype,

respectively.

Model (Figures) # Crs. # Rib. |x| |p| Stage I Stage II Stage III Total Sim. Fit Scan Fit

Sphere (15) 90 10 (10) 13,230 3’600 00:01 00:10 - 00:11 0.0031 -

Teardrop (11, 13) 120 12 17640 4800 00:06 01:43 06:01 07:50 0.0062 -

Torus (12) 252 16 (22) 37044 10080 00:13 02:53 - 03:06 0.0025 0.01510

Pseudosphere (1, 20) 264 30 (32) 37290 10120 00:22 21:57 - 22:19 0.007 0.01436

Duck (16(c)) 300 5 44100 12000 01:03 06:58 05:25 13:26 0.0125 -

Duck (16(b)) 303 10 44541 12120 00:41 13:15 15:38 29:33 0.0075 -

Duck (16(d)) 352 3 (45) 51744 14080 02:08 12:06 24:42 38:56 0.0085 0.0145

Bunny (1, 8, 20) 315 13 (26) 45477 12360 01:19 40:18 18:06 59:43 0.0127 0.0633

Bird (1, 15, 20) 326 17 (35) 46749 12700 00:26 25:40 2:11:21 2:37:27 0.0081 0.0217

Bean (15) 372 14 54684 14880 00:19 10:01 22:40 32:60 0.0019 -

Owl (4) 384 32 (42) 54240 14720 03:01 29:01 01:59 34:01 0.0163 0.0400

Costa (1, 9, 19, 20) 396 48 (60) 55452 15040 01:49 11:49 - 13:38 0.0075 0.0186

Lilium (1, 19, 20) 488 45 (56) 68700 18640 00:27 18:37 1:48:28 2:07:31 0.0045 0.0220

Cat A (1, 10, 18, 15) 516 14 (37) 75852 20640 01:02 16:59 19:14 37:15 0.0115 0.0130

Cat B (18) 516 14 75852 20640 02:00 15:15 17:16 34:30 0.0074 -

Cat C (18) 516 14 75852 20640 01:18 36:09 1:07:18 1:44:45 0.0025 -

Cat D (18) 516 14 75852 20640 01:32 24:39 - 26:11 0.0015 -

Cat E (18) 516 14 (39) 75852 20640 01:23 18:54 - 20:17 0.0014 0.0168

Klein Bottle (1, 7, 14) 540 36 (67) 79380 21600 03:39 29:45 21:47 55:11 0.0021 0.0182

Clam (17, 19) 674 43 96318 26160 03:04 38:44 09:35 51:23 0.0095 -
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