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Supplementary Material

This document presents detailed derivations of several formulas used in the paper.

1 Shape derivative for model problem

We illustrate the inaccuracy of the traditional formula for shape derivatives in a simpler setting:

J(ω) =

∫
ω

j(∇u) dx where u solves −∇ · (∇u+ g) = 0 in ω

n · (∇u+ g) = 0 on ∂ω.

Later, we will need the weak form of the constraint PDE:∫
ω

∇φ · (∇u+ g) dx = 0 ∀ trial functions φ. (A1)

Here, g is analogous to the macroscopic strain applied in homogenization.

Computing dJ [v] in terms of the Eulerian derivative, u̇. We seek an expression for dJ [v], J ’s initial
rate of change as ω is perturbed by velocity field v into altered shape ωt. We do this by applying Reynolds
Transport Theorem to J , showing a step-by-step derivation of the theorem. Our approach is to express all
quantities on the unperturbed reference domain, ω, and then differentiate with respect to “time” t:

dJ [v]
def
=

d

dt

∣∣∣∣
t=0

∫
ωt

j(∇tut) dxt =
d

dt

∣∣∣∣
t=0

∫
ω

j(F−Tt ∇ût) det(Ft) dx,

where xt = x + tv and ∇t are the spatial variable and gradient for the perturbed domain, ωt. We have
defined state function ut on ωt in terms of function ût defined on the reference domain (ut(xt) = û(xt− tv)).
Finally, Ft = I + t∇v is the Jacobian of the mapping from ω to ωt; it is used to re-express the perturbed
domain’s gradient operator and volume element in terms of the reference domain quantities.

Now that the integration domain is fixed, we can move the time derivative inside to compute:

dJ [v] =

∫
ω

(j′) ·
(
− (∇v)T∇u+∇ ∂ût

∂t

∣∣∣∣
t=0

)
+ j(∇u)∇ · v dx, (A2)

using the identities ∂
∂t

∣∣
t=0

(I+∇v)−T = −(∇v)T , ∂
∂t

∣∣
t=0

det(I+∇v) = ∇·v, and û0 = u. Here, ∂ût

∂t

∣∣
t=0

is
the material derivative at time t = 0. We denote it by δu and note its relationship to the Eulerian derivative

u̇
def
= ∂ut

∂t

∣∣
t=0

= δu−∇u · v. The material derivative’s gradient can therefore be written as:

∇δu = ∇u̇+∇ (∇u · v) = ∇u̇+ (v · ∇)∇u+ (∇v)T∇u. (A3)

We use this relationship to simplify (A2). Substituting the rightmost expression for ∇ ∂ût

∂t

∣∣
t=0

:

dJ [v] =

∫
ω

(j′) ·
(
∇u̇+ (v · ∇)∇u

)
+ j(∇u)∇ · v dx.

Finally, we apply the integration by parts
∫
ω
(j)∇ · v dx = −

∫
ω
(v · ∇)j dx +

∫
∂ω

(j)v · n dA(x) to arrive at
the simplified formula by cancellation:

dJ [v] =

∫
ω

j′(∇u) · ∇u̇ dx +

∫
∂ω

j(∇u)v · n dA(x). (A4)
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Solving for u̇. Formula (A4) requires u̇, which we find by differentiating both sides of the constraint’s
weak form, (A1). We do this using a second step-by-step application of Reynolds Transport Theorem (first
re-expressing the weak form for ωt on reference domain ω):

d

dt

∣∣∣∣
t=0

∫
ω

(F−Tt ∇φ) · (F−Tt ∇ût + g) det(Ft) dx = 0 ∀φ,

and manipulating this equation into a PDE for u̇. Here, we defined shape functions on the perturbed domain
by evaluating ω’s shape functions, φ, at the material coordinates; in the discrete setting, this definition
coincides with the shape functions one would construct on the perturbed finite element mesh (without
remeshing). Following the same steps as for differentiating J , we obtain:∫

ω

−
(
(∇v)T∇φ

)
· (∇u+ g)−∇φ · (∇v)T∇u+∇φ · ∇δu+∇φ · (∇u+ g)∇ · v dx = 0 ∀φ. (A5)

We apply (A3) to express this as an equation for u̇:∫
ω

∇φ ·
(
−∇v(∇u+ g)−�����

(∇v)T∇u+
[
∇u̇+ (v · ∇)∇u+�����

(∇v)T∇u
]

+ (∇u+ g)∇ · v
)

dx = 0 ∀φ.

Applying integration by parts to the last integrand, the left-hand side becomes:∫
ω

∇φ ·
(
−∇v(∇u+ g) +∇u̇+ (v · ∇)∇u

)
− (v · ∇)

(
∇φ · (∇u+ g)

)
dx +

∫
∂ω

∇φ · (∇u+ g)(v · n) dA(x)

Simplifying, we arrive at the PDE for u̇ in weak form:

−
∫
ω

∇(∇φ · v) · (∇u+ g) dx︸ ︷︷ ︸
I

+

∫
ω

∇φ · ∇u̇ dx +

∫
∂ω

∇φ · (∇u+ g)(v · n) dA(x) = 0 ∀φ. (A6)

To obtain the traditional boundary integral formula for the shape derivative, we must drop term I.
Indeed, provided (∇φ · v) lies is the space of test functions, this term vanishes because u solves (A1).
However, this is precisely the term that does not vanish for our Lagrange finite elements. For the moment,
we will drop it to show how to arrive at the traditional shape derivative formula:∫

ω

∇φ · ∇u̇ dx +

∫
∂ω

∇φ · (∇u+ g)(v · n) dA(x) = 0 ∀φ. (A7)

Applying the adjoint method. We apply the adjoint method to express dJ [v] as an explicit differential
form, avoiding the need to solve for u̇ for every perturbation v. Suppose we can find a scalar field p in our
space of test functions so that:∫

ω

(j′) · ∇ψ dx =

∫
ω

∇p · ∇ψ dx ∀ trial functions ψ. (A8)

Then, taking ψ = u̇:∫
ω

(j′) · ∇u̇ dx =

∫
ω

∇p · ∇u̇ dx = −
∫
∂ω

∇p · (∇u+ g)(v · n) dA(x),

where the last step used (A7) with p replacing φ. Plugging this into (A4), we arrive at the standard formula:

dJ [v] =

∫
∂ω

(
j(∇u)−∇p · (∇u+ g)

)
(v · n) dA(x). (A9)

The weak form (A8) corresponds to the adjoint PDE,

−∆p = −∇ · j′(∇u) in ω,
∂p

∂n
= n · j′(∇u) on ∂ω.
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2 Traditional shape derivative formula for worst-case stress

Now we compute the shape derivative in boundary integral form for our worst-case stress objective. For
simplicity, we consider the worst-case Frobenius norm stress measure:

J(ω) =

∫
ω

j(σ̄?(x) : TF (x) : σ̄?(x)) dx,

but the other stress measures’ derivations are nearly identical.
To shape-differentiate J , it will be necessary to know how j changes at each x when the fluctuation

strains change. As mentioned in the main text, the worst-case load σ̄? can be considered constant, but
TF (x) = FT : F is a function of the fluctuation strains via (5) from the main text. Furthermore, though
the homogenized elasticity tensor C̄ is technically a function of the fluctuation strains, it simplifies our
derivation to view C̄ as an independent parameter of s and then separately compute its shape derivative,
(A21). Representing these relationships explicitly, we write:

j(s(x)) := j(s(εpq, C̄,x)),

where εpq expands to six strain field arguments in 3D. Perturbations δεkl and δC̄ of these arguments induce
perturbation:

δj = (j′)
∂s

∂εkl
: δεkl + (j′)

∂s

∂C̄
:: δC̄

= τkl : δεkl + γ : δC̄,

where we defined

τkl
def
= (j′)

∂s

∂εkl
, γ

def
= (j′)

∂s

∂C̄
.

2.1 Computing τ kl and γ

First, we compute the rank-two tensor field τkl expressing the derivative of objective integrand j with respect
to fluctuation strain εkl (holding C̄ and thus S̄ constant).

τklij =j′
∂

∂εklij

[
σ̄? : FT : F : σ̄?

]
= j′σ̄? :

[(
∂

∂εklij
FT

)
: F + FT :

∂

∂εklij
F

]
: σ̄?,

=2j′σ̄? : FT :

(
∂

∂εklij
F

)
: σ̄?,

using the fact that a tensor and its transpose give the same quadratic form. From definition (5) in the main
text,

∂

∂εklij
Fabcd = Cbase

abef S̄ghcd
∂

∂εklij
(εghef + eghef ) = Cbase

abef S̄ghcdδgkδhlδeiδfj = Cbase
abij S̄klcd.

After simplification, we have
τkl = (2j′Cbase : F : σ̄?)[S̄ : σ̄?]kl. (A10)

Next, we compute the rank-four tensor field γ expressing the partial derivative of objective integrand j
with respect to the homogenized elasticity tensor C̄.

δj = 2j′σ̄? : FT : Cbase : G : dS̄ : σ̄?,

= 2j′σ̄? : FT : Cbase : G : (−S̄ : dC̄ : S̄) : σ̄?,

= (−2j′σ̄? : FT : F ) : dC̄ : (S̄ : σ̄?),

=
[
(−2j′σ̄? : FT : F )⊗ (S̄ : σ̄?)

]
:: dC̄.
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Thus,
γ = (−2j′FT : F : σ̄?)⊗ (S̄ : σ̄?). (A11)

Now, applying the Reynolds Transport Theorem to our objective, we find:

dJ [v] =

∫
∂ω

(v · n̂)j dA(x) +

∫
ω

τkl : ε(ẇkl[v]) + γ :: dC̄[v] dx

=

∫
∂ω

(v · n̂)j dA(x) +

∫
ω

τkl : ε(ẇkl[v]) dx︸ ︷︷ ︸
I

+

(∫
ω

γ dx

)
:: dC̄[v], (A12)

where ẇkl[v] is an Eulerian derivative with respect to “time” t under the advection velocity v. The first and
third terms are straightforward to evaluate (once we derive a formula for dC̄[v]), but the middle integral
“I” involves the problematic term ẇkl[v], which measures how the fluctuation displacements change when
perturbing the shape with velocity field v.

2.1.1 Forward version

The “forward” sensitivity analysis determines, for a particular velocity field v, the change in fluctuation
displacements ẇkl[v] and substitutes them into (A12). We can determine an equation for ẇkl[v] by differ-
entiating the weak form of the klth cell problem. To simplify the derivation, we apply our periodic boundary
conditions and no-rigid-translation constraints directly to the space of trial and test functions. Then the cell
problem’s weak form is just ∫

ω

ε(φ) : C : [ε(wkl) + ekl] dx = 0 (for all φ), (A13)

where wkl and φ are periodic vector fields on the unit cell Y . Differentiating both sides of this equation by
näıvely applying Reynolds Transport Theorem (assuming shape functions, φ, are independent of ω),∫

∂ω

(v · n̂)

(
ε(φ) : C : [ε(wkl) + ekl]

)
dA(x) +

∫
ω

ε(φ) : C : ε(ẇkl[v]) dx = 0 (for all φ), (A14)

which is the weak from of a cell problem for ẇkl[v]. Once we solve this equation for each ẇkl[v], we can
compute (A12) easily.

2.1.2 Adjoint version

We determine the adjoint equations by noticing the following: suppose we can find an “adjoint solution” pkl

from the same space as φ (i.e., a periodic test function for the original PDE) such that∫
ω

τkl : ε(ψ) dx =

∫
ω

ε(pkl) : C : ε(ψ) dx (for all ψ), (A15)

where ψ is from the same space as ẇkl (i.e., a periodic trial function for the original PDE). Then we can use
pkl to compute integral I as follows:

I =

∫
ω

τkl : ε(ẇkl) dx =

∫
ω

ε(pkl) : C : ε(ẇkl) dx = −
∫
∂ω

(v · n̂)

(
ε(pkl) : C : [ε(wkl) + ekl]

)
dA(x).

The second step follows by substituting ẇkl for ψ in (A15), and the third by substituting pkl for φ in (A14).
Using this formula, our full shape derivative can be computed efficiently as:

dJ [v] =

∫
∂ω

(
j − ε(pkl) : C : [ε(wkl) + ekl]

)
v · n̂ dA(x) +

(∫
ω

γ dx

)
:: dC̄[v], (A16)
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summing over kl. We recognize (A15) as the weak form of the adjoint cell problem PDE:

−∇ · σ(pkl) = −∇ · τkl in ω,

σ(pkl)n̂ = τkln̂ on ∂ω,

pkl periodic,

∫
ω

pkl dx = 0.

3 Accurate discrete formulation (volume form)

Since we consider straight-edged finite elements, the perturbation velocity v is a piecewise linear vector field
and is represented as a perturbation vector on each mesh vertex:

v =
∑
i

λiδqi ,

where λi is vertex i’s linear shape function (barycentric coordinates) and δqi is its perturbation. Unfortu-
nately, the most straight-forward approach to computing shape derivatives of plugging this piecewise linear
v into a discretized version of (A16) leads to wildly inaccurate results for the high Lp norms needed to
prevent stress concentrations.

It turns out that the Reynolds Transport Theorem and the Eulerian derivatives used in (A12) are the
source of the error. As in the model problem, where proceeding from (A5) to (A7) introduced an error,
the analogous step for our objective is problematic. We avoid this step by keeping everything in terms of
material derivatives.

3.1 Discrete sensitivity of the objective

The analog to (A2) in our setting is:

dJ [v] =

∫
ω

j∇ · v + τkl : D[ε(wkl)] + γ :: dC̄[v] dx

=

∫
ω

j∇ · v + τkl : ε(D[wkl])︸ ︷︷ ︸
II

−τkl : sym(∇wkl∇v) dx +

(∫
ω

γ dx

)
:: dC̄[v], (A17)

where D[·] denotes the material derivative, and we use ∇ applied to a vector field to denote the Jacobian
(not its transpose). Note that D[·] and ε(·) do not commute, but the following identity holds for any linear
combination, w, of shape functions, φ:

D[ε(w)] = ε(D[w])− sym(∇w∇v). (A18)

Again, II is the difficult term to compute.

3.1.1 Discrete Forward Sensitivity of wkl

We can determine D[wkl], the material derivative of the fluctuation displacements, by differentiating the

weak form (A13). First, we define microscopic stress σkl def
= C :

[
ε(wkl) + ekl

]
to simplify notation. Then,

differentiating both sides of the weak form:

∀φ : 0 =

∫
ω

(
ε(φ) : σkl

)
∇ · v +D

[
ε(φ) : C :

[
ε(wkl) + ekl

]]
dx (for all φ),

=

∫
ω

(
ε(φ) : σkl

)
∇ · v − sym(∇φ∇v) : σkl + ε(φ) : C :

(
ε(D[wkl])− sym(∇wkl∇v)

)
dx, (A19)
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where we used the fact that D[φ] = 0 because the test functions for straight-edged finite elements are
expressed in terms of the mesh’s barycentric coordinate functions and thus are tied to material points (i.e.
their values advect with the mesh and have zero material derivative). (A19) is the weak form of a PDE
solving for D[wkl], which can be discretized in the straight-forward way: as a vector holding the material
derivative of wkl at each mesh node. Notice that this equation is the analog of (A5).

3.1.2 Discrete adjoint sensitivity

To obtain an explicit representation of the differential form accepting the perturbation velocity fields on ω
and outputting a change in the objective, we must apply the adjoint method.

The adjoint equations turn out to be identical to (A15) due to the similarity of integrals I and II; simply
substitute D[wkl] for ẇkl in the derivation. However, once we have the adjoint solutions pkl, the exact
discrete gradient differs from (A16). Instead, we derive it by computing II as follows: First, substitute
D[wkl] for ψ in (A15) to determine:

II =

∫
ω

τkl : ε(D[wkl]) dx =

∫
ω

ε(pkl) : C : ε(D[wkl]) dx

Next, substitute pkl for φ in (A19) to rewrite the first integrand again:

II =

∫
ω

−
[
ε(pkl) : σkl

]
∇ · v + sym(∇pkl∇v) : σkl + ε(pkl) : C : sym(∇wkl∇v) dx.

Finally, the full discrete shape derivative is evaluated as:

dJd[v] =

∫
ω

[
j − ε(pkl) : σkl

]
∇ · v + (∇pkl∇v) : σkl + (ε(pkl) : C − τkl) : (∇wkl∇v) dx

+

(∫
ω

γ dx

)
:: dC̄[v],

(A20)

which gives the exact discrete shape derivative when the piecewise polynomial FEM fields are substituted for
pkl,wkl, and v. We dropped the symmetrization operator sym(·) since its output is always double contracted
with a symmetric tensor.

3.1.3 Discrete Differential Form

It is convenient to express dJd[v] as an explicit inner product with the per-vertex perturbation vector field
δq. To do this, we must re-express the terms involving v in terms of δq. The easiest is ∇·v =

∑
m∇λm ·δqm.

The terms like τkl : (∇pkl∇v) take more work. Recalling that we take ∇ to represent the Jacobian when
applied to vectors (rather than its transpose),

∇v =
∑
m

δqm ⊗∇λm.

We can write ∇pkl in terms of each scalar-valued finite element shape function ϕn and its vector-valued
coefficient pkl

n as:

∇pkl =
∑
n

pkl
n ⊗∇ϕn.

Plugging these Jacobian expressions into the double contraction we wish to compute:

τkl : (∇pkl∇v) =
∑
n,m

τkl :
[
(pkl

n ⊗∇ϕn)(δqm ⊗∇λm)
]

=
∑
m

δqm ·

(∑
n

[
∇λm · (τklpkl

n )
]
∇ϕn

)
.
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Finally, we make these substitutions in dJd[v] to express the differential form as an inner product with the
vertex node perturbations (here summation over vertices, m, and FEM nodes, n, is implied).

dJd[λmδqm] =

(∫
ω

[
j − ε(pkl) : σkl

]
∇λm +

[
∇λm ·

(
σklpkl

n + (ε(pkl) : C − τkl)wkl
n

)]
∇ϕn dx

)
· δqm

+

(∫
ω

γ dx

)
:: dC̄[v].

3.1.4 Homogenized Tensor Discrete Shape Derivative

The evaluation is completed once we substitute the discrete formula for dC̄. We start with the “energy
form” of the homogenized tensor [1]:

C̄ijkl =
1

|Y |

∫
ω

[ε(wij) + eij ] : C : [ε(wkl) + ekl] dx.

Applying the analog of (A2) for this expression:

dC̄ijkl[v] =
1

|Y |

∫
ω

(
σij : C−1 : σkl

)
∇ · v +

(
ε(D[wij ])− sym(∇wij∇v)

)
: C : [ε(wkl) + ekl]

+
(
ε(D[wkl])− sym(∇wkl∇v)

)
: C : [ε(wij) + eij ] dx.

Finally, because D[wij ] can be written as a linear combination of the shape functions φ, the two terms
involving it vanish due to (A13) (so no adjoint problem is required). Applying the same manipulations as
in the previous section, we arrive at the explicit differential form:

dC̄ijkl[λmδqm] =

(
1

|Y |

∫
ω

(
σij : C−1 : σkl

)
∇λm −

[
∇λm ·

(
σklwij

n + σijwkl
n

)]
∇ϕn dx

)
· δqm, (A21)

where again summation over m and n is implied.
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