
Volumetric Basis Reduction for Global Seamless Parameterization of Meshes

Julian Panetta
New York University

Michael Kazhdan
John Hopkins University

Denis Zorin
New York University

Abstract

We present an efficient method for generating global parameteriza-
tions of large meshes. Following the state-of-the art work on global
parameterization, we use a cross-field guided approach: we fit the
parameterization to a field aligned with surface geometry while
constraining the mapping to be seamless, in the sense of local con-
tinuity of parametric lines. We extend these approaches by show-
ing that the constraints on the mapping can be decoupled from the
mesh tessellation, allowing us to formulate the problem of seamless
mesh parameterization over a general function basis. In particular,
we show that by adapting a recently proposed volumetric basis, we
can develop a highly efficient solver for mesh parameterization.

Using the solver, we compute parameterizations for meshes con-
sisting of up to 20 million vertices in 1600 seconds, providing a
solution that outperforms state-of-the-art direct solvers in both time
and memory.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: geometric modeling, parameterization

1 Introduction

Computing global seamless parameterizations is useful for a va-
riety of geometry processing tasks. In particular, it is an essen-
tial component of a class of quadrangulation algorithms with many
attractive features (feature alignment, automatic singularity place-
ment, smoothness, and element shape control). Existing versions
of global parameterization methods use piecewise-linear discretiza-
tions tied to mesh connectivity in combination with direct linear
systems solvers. While highly efficient and accurate for problems
of moderate size, direct solvers are limited in their applicability to
larger problems by their high memory usage, by the relatively high
time complexity of their factorization stage (O(n3/2) for these types
of systems), and by how difficult they are to parallelize.

In this paper, we present a global parameterization technique based
on the ideas developed in [Chuang et al. 2009] to enable handling
of large meshes. The key idea of [Chuang et al. 2009] is to use
restrictions of volumetric basis functions to the surface to define a
basis. The key advantage of this approach is that the basis func-
tions used by the solver are decoupled from the mesh connectivity
and resolution. In particular, this makes it possible to compute ap-
proximations to the parameterization of a large mesh at a chosen
scale.

This is of particular importance in the context of mesh parameter-
ization, which is most often guided by a smooth field, so the full
resolution of the mesh is not required in order to accurately com-
pute the mapping.

While demonstrating good scalability, accuracy, and mesh-
independent behavior, the method of [Chuang et al. 2009] has a
number of limitations: it was developed to solve a scalar Poisson
equation on the surface as opposed to the more complex constrained
versions of Poisson equations that need to be solved for global pa-
rameterization: in contrast to the scalar Poisson equation, which
easily admits a standard Galerkin discretization in any basis, the

Figure 1: Parameterization of a large (7M triangle) mesh com-
puted using our solver

global parameterization problems are formulated in [Kälberer et al.
2007; Bommes et al. 2009] directly in terms of piecewise-linear and
piecewise-constant functions on the mesh.

Our work addresses these difficulties. The main components of our
solver include:

• a generalized formulation of the global seamless parameteri-
zation problem, not tied to the piecewise-linear basis.

• use of the piecewise-linear basis and a direct solver for post-
processing the subset of the mesh on which we expect the
volumetric solution to be inaccurate.

For sufficiently large meshes, we obtain better time and space ef-
ficiency: for the largest meshes, compared to a direct solution of
the system in the mesh’s piecewise-linear basis, we are roughly five
times more efficient in space and ten in speed, making it possible
to parameterize a mesh containing 20 million triangles in 1600 sec-
onds.

2 Related work

Parameterization was studied from many different points of view
(see [Hormann et al. 2007; Sheffer et al. 2006] for surveys). We
briefly consider the most closely related work.

Our method is based on [Kälberer et al. 2007] and [Bommes et al.
2009]: we find a parameterization of a given shape by fitting its
gradient to a given smooth cross-field capturing surface features
(for example, to smoothed principal curvature directions or a field
constructed from features). [Ray et al. 2006] is a similar nonlin-
ear feature-aligned method. A recent technique of [Zhang et al.
2010] uses a wave-based approach, which combines some of the
features of spectral quadrangulation for feature alignment and pro-
vides anisotropy control. In all previous work, parameterization



techniques are applied to small to medium size meshes. Most re-
cently, [Pietroni et al. 2011] extends field-based techniques to pa-
rameterization of range image sets, which can be used as interme-
diate representations for parametrizing large models. We note that
while this method can construct coarse quadrangulations of large-
scale models easily, it does not produce in general a parameteriza-
tion of the original models.

Other methods use global harmonic or conformal parameterizations
with singularities [Gu and Yau 2003; Dong et al. 2006; Tong et al.
2006; Ben-Chen et al. 2008; Springborn et al. 2008; Kovacs et al.
2009].

A number of algorithms [Eck et al. 1995; Lee et al. 1998; Kho-
dakovsky et al. 2003; Marinov and Kobbelt 2005; Daniels et al.
2009a; Daniels et al. 2009b; Pietroni et al. 2009; Tarini et al. 2010]
use simplification techniques for constructing a conforming domain
mesh. These techniques make it possible to obtain very coarse do-
mains with good user control over the domain size. While some
degree of feature alignment is possible (cf. [Lee et al. 1998], [Mari-
nov and Kobbelt 2005]), it is limited by the difficulty of preserv-
ing features in simplification. These techniques are fundamentally
different from the PDE-based techniques we are considering, and
comparisons of potential scalability and quality are difficult.

Fitting the gradients requires solving a sparse linear system, and
a variety of methods have been proposed for addressing this chal-
lenge. These have included both direct solvers [Davis and Hager
2005; Schenk et al. 2001] and multigrid solvers. The multigrid
solvers have ranged from “black-box” algebraic multigrid solvers
that rely solely on the algebraic information encoded in the sys-
tem matrices [Ruge and Stueben 1987] to more geometry-driven
solvers that support multigrid through the design of mesh hier-
archies [Kobbelt et al. 1998; Clarenz et al. 2000; Schneider and
Kobbelt 2001; Ray and Levy 2003; Aksoylu et al. 2005; Shi et al.
2006].

3 Global parameterization in general bases

3.1 Global parameterization

We start with a brief review of global parameterization. In general,
surfaces must be cut for a mapping to the plane to be possible. It
is common to cut a surface M to a topological disk, Mc, along a
1D seam and construct a map q : Mc → C, q = (u,v) = u+ iv (we
use complex representation of parameterization coordinates with
i =
√
−1). Each point of the seam is split into multiple bound-

ary points of the cut mesh and has multiple parametric positions.
The seam consists of a set of seam curves, Σ, with each seam curve
σ ∈ Σ consisting of points split into exactly two points in Mc. These
curves terminate at seam nodes, which can split into more than two
points in Mc or can remain unsplit.

Parameterization defines a flat metric on the surface; conversely, if
a flat metric is defined and the surface is cut to a disk, a parame-
terization is uniquely determined up to rigid transforms. Due to the
Gauss-Bonnet theorem, an everywhere flat metric may not exist:
the integral of the curvature should match the Euler characteristic.
Forcing the metric to be flat everywhere may also lead to high dis-
tortion. For these reasons, a number of singularities (cones) with
nonzero curvature need to be introduced.

The seam needs to pass through singularities as no local continuous
parameterization can be defined in their neighborhoods. At any
other point, a consistent local parameterization can be constructed
from the metric, which has to coincide with the original one up to
rigid transforms of the parts of the cut mesh Mc separated by seam
curves.

Figure 2: A cut cat model (left), parameterized to a 2D domain
(bottom). Without enforcing integer constraints on the translational
coefficients, the parameterization results in discontinuities across
the seam (center). Fixing the translational coefficients at integer
positions guarantees a continuous parameterization (right).

We are interested in seamless parameterizations, which satisfy addi-
tional constraints at the seam: the change of the coordinates across
the seam is a restricted rigid transform, X . The rotational part of
this transform is restricted to the symmetries of the coordinate grid
(kπ/2 rotations) so that the parametric lines in the u and v directions
continue across the seam smoothly. More precisely, we require the
following constraint to hold for the two parametric positions q and
q′ associated with a point on the seam:

q′ = Xq = rq+ t, (1)

where r is a rotation by kπ/2 (in complex form, ±1 or ±i), and t
is a translation. For many applications, it is also important that all t
are of the form h j, where j is a point on the integer lattice, and h is
a global scale factor (Figure 2).

The parameterization is typically constructed by minimizing an en-
ergy that is invariant with respect to these rigid transformations. We
use the energy of [Kälberer et al. 2007; Bommes et al. 2009]; this
energy attempts to align the gradients of the parameterization with
a pair of orthogonal unit vectors (uT ,vT ), and can be written in the
complex form as

ET = AT ‖∇q−wT ‖2, (2)

where wT = uT + ivT . The unordered quadruple of vectors
(uT ,vT ,−uT ,−vT ) forms a continuous cross-field on the surface,
except at a number of isolated singularities, which are also param-
eterization singularities.

The rotations r in the constraint (1) are inferred from the cross-
field as discussed in [Bommes et al. 2009]; the translations remain
free variables in the optimization, but they are constrained to be
integer. We adopt the convention that all seam curves are oriented,
and the rotation and translation associated with the curve is the one
for which q′ corresponds to the domain on the right of the curve,
when looking towards its tip.

3.2 Parameterization with general basis functions

We compute our parameterizations using a basis derived from a
general basis {Bi} (i = 1 . . .N) on the mesh M. We do not make
any assumptions on the basis functions Bi, other than that

• the basis functions are continuous;

• they form a partition of unity; and

• we can compute gradients of these functions on each triangle.



Hat basis functions on the mesh are a special case of our construc-
tion, but our primary target is the basis functions obtained by re-
stricting a B-spline basis defined on a regular lattice to the mesh, as
described in the next section. These functions can have a large and
complex support. In particular, the support can contain multiple
components or have nontrivial topology.

The seam conditions (1) result in constraints on the basis functions’
coefficients. In the solver used in [Bommes et al. 2009], constraints
on the coefficients of the hat basis functions (that is, on parametric
positions of mesh vertices) are constructed explicitly and then elim-
inated using Gaussian elimination on the constraint matrix. This
approach, while simple and flexible, does not scale well and is un-
suitable for multigrid formulations.

Instead, we use geometric considerations to obtain a reduced basis
for which constraints are satisfied automatically. This approach re-
sembles the formulation of [Kälberer et al. 2007] for the basis of
closed 1-forms (but we do not use a covering surface).

Constraints on the basis function coefficients. Suppose the
support suppBi is split by the seam into disconnected components
Di j . Let Bi j be the basis functions obtained from Bi by splitting
it up into individual basis functions each supported on Di j. The
parameterization F(p) of Mc is defined as

F(p) = ∑
i, j

ci jBi j(p), (3)

where ci j are complex coefficients. Each coefficient is associated
with a domain Di j .

Seam curve σ splits the incident domain components into two (not
necessarily disjoint) sets: regions to the left and regions to the right.
Indexing the regions on the left as Di j , we denote the corresponding
components across σ by Di j′ . As Bi is continuous, Bi j′(p) = Bi j(p)
for a seam point p. Then, the constraint (1) can be written as:

0 = ∑
i, j

ci j′Bi j′(p)− rσ ∑
i, j

ci jBi j(p)− tσ

= ∑
i, j
(ci j′ − rσ ci j− tσ )Bi j(p),

where we have used the partition of unity property of the basis. In
general, this equation can be satisfied for all p along the seam curve
only if

ci j′ = rσ ci j + tσ (4)

for any Bi with suppBi overlapping the seam curve σ .

Restricted basis example. To explain our formulas for the basis
satisfying (4), we consider an example basis function Bi with sup-
port overlapping a single seam σ . The seam splits the support into
two parts: Di0 and Di1. Since ci1 = rσ ci0 + tσ , we can rewrite the
linear combination ci0Bi0 + ci1Bi1 as ci0(Bi0 + rσ Bi1)+ tσ Bi1. The
dependent coefficient ci1 is eliminated, and two new basis functions
appear: Bi0 + rσ Bi1 and Bi1, the latter corresponding to the transla-
tion variable tσ . If the whole surface has a single seam (e.g. a disk
with a hole), the complete new basis consists of B̃i = Bi0 + rσ Bi1
for all Bi overlapping σ , B̃i = Bi for the rest, and a single additional
basis function B̂σ = ∑i Bi1; then F(p) has the form ∑i ci0B̃i+tσ B̂σ ,
and it is easy to check that it satisfies the seam constraint for any
choice of variables ci0 and tσ .

More generally, a restricted basis consists of (a) for each connected
component of suppBi not overlapping a singularity with noninte-
ger index, a single basis function B̃i that is a linear combination of
Bi j; and (b) a set of basis functions B̂σ for independent translation
variables tσ , which are obtained by Gaussian elimination on a small

Figure 3: Example of a local domain graph: A function Bi has
support Di on the mesh. This support is the union of four discon-
nected regions Di0, . . . ,Di3 on the cut mesh. The nodes in the local
domain graph (right) correspond to the disconnected regions and
edges connect nodes whose associated regions meet along a seam.

constraint system of complexity proportional to the number of seam
curves.

We call the first type of basis functions positional, as in the simplest
case of the hat function basis, these define the parametric positions
of vertices. We call the second type translational basis functions.

General restricted basis and constraints. Next, we briefly ex-
plain how these two types of basis functions are constructed using
constraints (4). A more detailed derivation is found in the supple-
mentary document.

As in the simple example above, we initially construct a single new
positional basis function B̃i for each Bi of the original basis and a
translational basis function B̂σ for each seam curve. This transla-
tional basis function will accumulate a contribution from each orig-
inal basis function Bi whose support overlaps σ . These new ba-
sis functions, however, are not generally independent: each Bi with
support overlapping one or more seams may contribute a constraint,
either expressing a positional variable in terms of translations or
constraining the translational variables.

In the following, we consider one original basis function Bi at a
time, so we drop the index i. For simplicity, assume that its support
is connected (disconnected parts of support are effectively treated
as separate basis functions).

Local domain graph. The local domain graph GD of suppBi is
a directed graph with nodes representing the domains D j and edges
representing shared seam curves σ (Figure 3). Typically this graph
either has one node or a single pair of edges connecting two nodes,
but the structure is more complicated for basis functions overlap-
ping multiple seam curves and singularities. To be able to handle
general volumetric basis functions, we consider the problem in full
generality.

Constraints c j′ = rσ c j + tσ are associated with the edges in the
graph connecting D j and D j′ and will accumulate for paths.

For an edge path π = (e1, . . . ,ek) in GD, we define R(π) to be the
product of rotations r`(ek)r`(ek−1) . . .r`(e1), where `(e) is the seam
corresponding to edge e. For an empty path π , R(π) = 1.

Consider, for example, a path π with 3 edges, connecting domains
D0, . . . ,D3, and crossing seam curves σ1,σ2,σ3. Composing con-
straints along this path, we get c3 = r3(r2(r1c0 + t1) + t2) + t3 =
r3r2r1c0 + r3r2t1 + r3t2 + t3. Therefore, the term c3B3 contributes
a term r3r2B3 to the translational basis function B̂σ1 , r3B3 to B̂σ2 ,
and B3 to B̂σ3 .



More generally, for a path π connecting Di and D j with edges
e1 . . .ek, we have a constraint of the form

c j = R(π)ci + ∑
σ∈Σ

T σ (π)tσ
2

,

where T σ (π) represents the coefficients accumulated onto tσ dur-
ing traversal of π and is given by the formula

T σ (π) = ∑
e∈π,`(e)=σ

R(π+
e )− ∑

e∈π,`(e−1)=σ

R(π+
e )r−1

σ . (5)

Here, π+
e is the part of π following e. Every time an edge in the

path crosses σ , it contributes to the constraint transform a term of
either tσ or tσ−1 = −r−1

σ tσ (depending on the crossing direction)
onto which the subsequent seam crossings compose a rotation. For
an empty path π , T σ (π) = 0.

The division by two in the constraint’s translation term is needed
because Σ contains both σ and its oppositely oriented pair σ−1,
causing two copies of the same translation term to accumulate for
each seam crossing.
Proposition 1. The definitions of R(π) and T σ (π) depend only on
the homotopy class of the path π: if two paths can be deformed to
each other, they have equal R(π) and T σ (π).
Proposition 2. Fix a domain D0 (reference domain) in the support
of B, and let π j be a path connecting it to D j. Constraints (4) imply
that the basis function B̃ and the term B contributes to B̂σ for each
seam σ are given by

B̃ = ∑
j

R(π j)B j

B̂σ
loc = ∑

j
T σ (π j)B j/2.

(6)

These propositions are proved in the supplementary material.

Constraints for local graphs with nontrivial homology. If the
local graph is a tree, there is a unique path from the reference do-
main to each D j, and there is only one way to define c j from c0.
On the other hand, if the graph has a nontrivial loop, there may be
multiple paths π j from D0 to D j yielding different expressions for
c j that all must agree. This leads to constraints on the coefficients.

Due to the homotopy invariance of the expressions (Proposition 1),
it is sufficient to find a homology basis in the graph to define all in-
dependent constraints. Choosing a homotopy basis with base point
D0, we obtain for each loop in the basis, π:

c0 = R(π)c0 + ∑
σ∈Σ

T σ (π)

2
tσ . (7)

There are two possibilities. When R(π) = 1 we get a constraint on
translations only,

∑
σ∈Σ

T σ (π)

2
tσ = 0, (8)

as c0 does not enter the equation. When R(π) 6= 1, the constraint
yields an expression for c0 (and consequently for all other c j) in
terms of translations:

c0 =
1

1−R(π) ∑
σ∈Σ

T σ (π)

2
tσ . (9)

The latter constraints simply eliminate some functions B̃ from the
basis. The former are assembled into a small system, which is

ei 

supp Bij 

Figure 4: Triangle collapse: When the tessellation of the mesh
(left) is much finer than the resolution of the finite-elements (cen-
ter), triangles in the vicinity of non-integer cones collapse to a sin-
gle point in the parameterization domain. In texture mapping ap-
plications, this causes severe distortion near these cones (right).

solved for an independent set of translations. Introducing the in-
dex sets It

ind and It
dep for independent and dependent translations

(and It
all = It

ind ∪ It
dep), we can compute weights W expressing all

translations in terms of the independent ones:

tm = ∑
n∈It

ind

wmntn ∀ m ∈ It
all .

Local constancy of parameterization. It is important to ob-
serve that every basis function whose domain graph includes the
cycle in (9) has an identical positional constraint (the expression
for ci0 does not depend on i). In common cases (e.g. a single singu-
larity in the common overlap area Ω, which is separated by seams
into domains D j) it follows that all basis functions overlapping Ω

have the same coefficients. Combining this with the partition of
unity property, we see that the parameterization is constant on each
domain D j. In other words, it collapses these domains to single
points (Figure 4). We note that this does not happen if only a single
basis function overlaps any singularity, which is the case for the hat
basis.

This is an important limitation of parameterizations obtained using
a general basis; we discuss its implications in Section 5.

Complete basis description. The basis satisfying all constraints
by construction is defined in the following proposition, which fol-
lows from the formulas above. We must now reintroduce the in-
dices from our original basis {Bi}, which means that the quantities
defined in (6) for each Bi are renamed B̃i and B̂σ

loci
.

Proposition 3. Let Ip
ind be the index set for basis functions Bi whose

local graphs contain only homology loops π with R(π) = 1, i.e.
whose positional coefficients have no constraint like (9). Let Ip

dep be
the remaining basis function indices. Then the reduced basis con-
sists of (a) positional functions B̃i defined by (6) for each i ∈ Ip

ind;
and (b) translational basis functions B̂n defined by

B̂n = ∑
m∈It

all

wmn

 N

∑
i=1

B̂σm
loci

+ ∑
d∈Ip

dep

1
1−R(πd)

T σm(πd)

2
B̃d


for each n ∈ It

ind . Here πd is a noncontractible closed path in
GD(Bd) starting and ending at Dd0 and having R(πd) 6= 1. No-
tice that this formula implicitly uses the fact that each translation
variable tm originated from some seam σm.

The formulas are relatively complex, as few assumptions can be
made about the structure of the local graphs for the basis functions.



Figure 5: Reduced basis functions: A positional basis function in
the octree basis not overlapping a seam (left). A positional function
overlapping a seam (center). A translational basis function (right).
Complex values are visualized using HSV, with hue corresponding
to the angle and value corresponding to norm. Thus, the first func-
tion is continuous over the mesh, while the second and third exhibit
a rotation as they cross the seam.

They can be greatly simplified if, e.g., the support of a basis func-
tion contains only a single node of the seam, is simply connected,
and crosses each seam exactly once.

These conditions hold for the hat basis, which can be reduced to a
basis similar to [Kälberer et al. 2007]. For non-seam vertex basis
functions, the local graphs are trivial. For a seam node, the local
domain graph is a single loop, with vertices corresponding to seam
edge-separated sectors in the node’s one-ring of triangles.

For this reason, there is only one constraint associated with each
seam node: there is only one non-contractible path π in the loop. If
the node is nonsingular or has integer index, then R(π) = 1 and a
constraint on translations is added, as in (8).

Otherwise, the position of the vertex is determined by translations
as in (9). Each translational basis function ends up following a set
of seam curves and differences to 1 across these seams.

Discretizing the energy using the new basis. We use a stan-
dard Galerkin formulation for the system: to minimize ‖∇q−w‖2

over a basis φi, we compute the system matrix L and right-hand-side
b as

Li j =
∫

suppφi∩φ j

〈∇Mφi,∇Mφ j〉dA,

bi =
∫

suppφi

〈∇Mφi,w〉dA,

using our restricted basis functions (both positional and transla-
tional) for φi.

4 Volumetric basis functions

We begin with a brief review of the volumetric system described
in [Chuang et al. 2009] and then describe how the method can be
adapted to support mesh parameterization.

4.1 The basis

To define a basis, [Chuang et al. 2009] embed the mesh M in a
regular 2D × 2D × 2D voxel grid. Then, first-order B-splines are
associated with the corners of the grid cells, and test functions
{B1(p), . . . ,Bn(p)} : M→R are defined by restricting the B-splines
to the surface of the mesh. Since only those B-splines whose sup-
port overlaps the geometry need to be considered in defining the
linear system, the coefficients of the system can be indexed by the
corners of all depth-D nodes of an octree that is adapted to the sur-
face. For first-order B-splines, this means that only corners of cells
overlapping the surface need to be considered.

4.2 Defining the linear system

To use the volumetric basis in the task of mesh parameterization,
we need to construct the associated linear system.

To simplify the integrations, we partition the cut mesh Mc into dis-
joint elements en whose intersections with regions Di j are trivial
(i.e. either the intersection is equal to en, or it is empty). In the
context of the hat function basis, these are simply the triangles of
the mesh, and each element is in the support of three basis functions
(corresponding to the hat functions centered at the three vertices of
the triangle). In the context of B-splines, the elements correspond
to the connected components of the intersection of Mc with voxels,
and an element is in the support of eight basis functions (one for
each of the eight corners of the voxel containing the element). Fig-
ure 4 (center) shows a visualization of the elements for the octree
basis.

Using these, we define element functions φi jn, obtained by restrict-
ing the function Bi j to en. Since the intersection of the support of
each Bi j with en is trivial by construction, we can express the func-
tions Bi j as sums of the φi jn. Furthermore, since the reduced basis
functions B̂m and B̃i are themselves expressed as the linear combi-
nations of the Bi j, we can define linear transformations P̂ and P̃ that
take a vector corresponding to the coefficients of a function with re-
spect to the reduced basis and return the coefficients with respect to
the element functions φi jn.

Using these functions, we can now define our linear system. We
first define the element function matrix and constraints:

Li j =
∫

M
〈∇Mφi,∇Mφ j〉d p bi =

∫
M
〈∇Mφi,wT 〉d p.

Then, the linear system with respect to the reduced basis becomes:(
P̂∗LP̂ P̂∗LP̃
P̃∗LP̂ P̃∗LP̃

)(
x̂
x̃

)
=

(
P̂∗b
P̃∗b

)
,

where x̂ are the coefficients of the solution with respect to the re-
duced translational basis functions B̂m, x̃ are the coefficients of the
solution with respect to the reduced positional basis functions B̃i,
and P̂∗ (resp. P̃∗) is the transpose conjugate of P̂ (resp. P̃).

Restoring Translational Degrees of Freedom. While this ap-
proach ensures a consistent parameterization, it is possible at low
grid resolutions that too many translational constraints will be in-
troduced and the system will not have sufficient degrees of freedom
to provide a high-quality solution. To address this, we modify our
implementation to use the local domain graphs only to define the
reduced basis, but not to define the translation constraints. For the
translational constraints, we use the minimal set of constraints that
must be satisfied by any basis – the constraints defined by using the
hat basis.

Unfortunately, using such an approach no longer guarantees that
we generate a consistent basis for the parameterization. We cor-
rect this by (1) identifying the basis functions whose local domain
graphs generate additional translation constraints (these are con-
straints that are linearly independent of the minimal constraint set),
(2) marking the triangles in the support of these basis functions as
triangles on which we may have an inconsistent parameterization,
and (3) performing a subsequent solve on the interior of the marked
region, defining a linear system with the hat basis and using a di-
rect solver. A solution before and after this post-processing solve is
shown in Figure 6.

While this stage requires the use of a direct solver on a system de-
fined by the hat basis, only a small fraction of the mesh is re-solved,
and this solve’s cost is often negligible.



Figure 7: The traditional hat basis parameterization (left) compared to the parameterizations obtained using the volumetric basis (right)
with voxel grids of resolution 643, 1283, and 2563 (from left to right). For each volume basis, solutions without (left and top) and with (right
and bottom) local refinement are shown. The solve time and memory requirements are reported below each result, along with the result’s L2

gradient error. For solves with local refinement, the percentage of mesh vertices in the refinement region is shown.

Figure 6: Left: inconsistent solution computed by the undercon-
strained volume basis solver (note the high distortion on the narrow
feature on the left). Center: a local refinement in the hat basis fixes
the inconsistency. Right: a full hat solve for comparison. Triangles
in the support of the cone-overlapping basis functions (on which
the local solve is run) are shown in green.

4.3 Solving for a seamless parameterization with inte-
ger translations

We compute the global parameterization in four steps.

1. Using the system described above, we solve for the indepen-
dent positional and translational coefficients with respect to
the reduced system. This gives a solution that satisfies the ro-
tational constraints across the seams but is not seamless, Fig-
ure 8(a).

2. We round the translational coefficients to integer values so
that integer isolines match across the boundaries. The result-
ing solution satisfies the constraints, but the rounding intro-
duces high-frequency error, Figure 8(b).

3. We solve the system using the volumetric basis a second time,
this time fixing the translational coefficients at their rounded
values. This gives a seamless solution that is smooth with
respect to the restricted B-splines system, Figure 8(c). How-
ever, this solution may have collapsed some regions to a single
point in the parametric domain.

4. We use the hat basis to define a linear system for the interior
of all triangles marked for post-processing. We then solve this
system for the region’s positions and free translations using a
direct solver (locking the boundary values), Figure 8(d).

a b 

c d 

Figure 8: Computing the parameterization: (a) We solve for the
translational and positional constraints using the volumetric solver.
(b) We round the translation constraints to obtain a seamless (but
not smooth) solution. (c) Keeping the translational coefficients
locked, we perform a second solve using the volumetric basis to
refine the positional coefficients. (d) We perform a direct hat basis
solve on the regions where the parameterization may be inconsis-
tent across seams (if we chose to omit those seams’ translational
constraints) or where the solution collapsed.

Alternatively, the more precise but expensive greedy rounding of
[Bommes et al. 2009] can be used.

5 Results

In this section, we explore the performance of our method and com-
pare it to the solution obtained using the hat basis.

Volumetric solutions at different resolutions. First, we look at
the solutions using the volumetric basis at different resolution voxel
grids to demonstrate the impact of discretization (Figure 7). The



image to the left shows a checkerboard pattern for the parameteri-
zation computed using the traditional hat basis. The pairs of images
to the right show the parameterizations obtained using the volumet-
ric basis at voxel resolutions 643, 1283, and 2563 both with (right
and bottom inset) and without (left and top inset) a subsequent local
refinement using the hat basis.

Examining the figure, we make several observations. First, while
the volumetric basis generates a parameterization with noticeable
artifacts, particularly near singularities, these are effectively re-
moved using the localized refinement: starting at resolution 1283,
the solution obtained using the volumetric basis in conjunction with
localized refinement is qualitatively similar to the solution returned
by the hat solver. This qualitative behavior can be validated quan-
titatively by measuring the L2-difference between the parameteri-
zations’ gradients and the guidance field. As the errors reported
in Figure 7 show, incorporating the localized refinement makes the
volumetric solution error similar to that of the hat solution. Since
the original guidance field was defined over the triangles of the
mesh, we expect the hat basis to perform slightly better since its
level-of-detail exactly matches that of the constraints.

Finally, we note that as the resolution of the grid grows coarser,
the region requiring local refinement grows, and there is a trade-off
between the efficiency of the volumetric solver and the inefficiency
of the localized refinement at coarser resolution.

Comparative performance of the volumetric and hat solvers.
We perform two comparisons. First, we benchmark the memory
and time performance of the volumetric solver (Vox) and the volu-
metric solver followed by a hat solver localized to regions of incon-
sistency and collapse (Vox+HatLoc), comparing them against the
global hat basis solve (Hat). We used the direct solver CHOLMOD
[Davis and Hager 2005] to solve all of our sparse linear systems.
(We also experimented with using the multigrid solver of [Chuang
et al. 2009] but found that the system was small enough at low voxel
resolutions that the highly optimized direct solver was competitive
with the hierarchical solver.) In these evaluations, we use a resolu-
tion 1283 voxel grid for the volumetric basis; we found this basis
resolution generates parameterizations that, relative to the hat basis
parameterizations, have similar numbers of foldovers and have gra-
dient deviation magnitudes that are never more than 25% greater.

The results of these comparisons over a broad set of meshes are pro-
vided in Figure 9. Our meshes are shown in Figure 11 and include
high-resolution geometry obtained from range scans and meshed
using [Kazhdan et al. 2006]: the Awakening mesh at depths 9, 10,
and 11 (284K, 1M, and 5M triangles); the Neptune mesh at depths
8, 9, 10, and 11 (89K, 322K, 1M, and 6M triangles); the Lucy mesh
at depth 11 (7M triangles); and the highest resolution mesh in our
data set, the David head mesh at depth 11 (20M triangles). We also
included artificially subdivided meshes: the hand mesh, subdivided
three times using 1-to-4 subdivision (65K, 262K, 1M, and 4M tri-
angles) and the Fertility mesh, subdivided four times (27K, 112K,
447K, 2M, and 7M triangles).

As the plots in Figure 9 indicate, though the hat basis provides a
more efficient solution for coarse meshes, the relative performance
of the hat basis solver deteriorates as the meshes get larger. In par-
ticular, we see that the volumetric solver (defined over a 1283 grid)
becomes more time- and space-efficient as the model sizes begin to
exceed 250K triangles, approximately the size of models typically
used in the previous work on global parameterization.

Note the substantial variation in performance of both hat and vol-
ume bases for meshes of approximately the same size. This varia-
tion is due to a significant difference in geometric complexity and,
consequently, a significant variation in the number of cones. Al-
though the associated number of translational degrees of freedom

Figure 9: Performance analysis for all meshes in our dataset. Run-
ning time and memory consumption of the volumetric solver at grid
resolution 1283, both without and with local refinement, is com-
pared against the hat solver.

is small in all cases, it has a significant impact on the sparsity struc-
ture of the matrix, as each translational basis function has relatively
large support and many more nonzero entries in its row (typically
hundreds or thousands).

To better understand the characteristics of the volumetric solver,
we perform a second comparison, this time over a set of succes-
sively higher resolution meshes of a single geometry, using the
same cross-field projected to each mesh. In this way, the effects
of the translational degrees of freedom can be excluded. The re-
sults of these experiments, one for the Fertility statue and one for
Neptune statue, are shown in Figure 10. The figure compares the
performance of the hat solver to the volumetric solver at resolutions
643 and 1283 with local refinement.

6 Conclusions

In this work, we have generalized the constraint framework for gen-
erating seamless mesh parameterizations to extend beyond the clas-
sical hat basis. We have shown that this allows us to define a finite-
elements solution to the parameterization problem using general
function spaces, and we have adopted the recent volumetric system
to support a solver that can seamlessly parameterize large meshes
more quickly and with significantly less memory than using the hat
basis.

In future work, we would like to consider several areas of research.
First, we want to extend our approach to support matrix stiffening
to reduce the fold-overs. (Our finite-elements formulation is partic-
ularly well-suited to this task since introducing stiffening weights
only requires scaling the element coefficients appropriately.) We



Figure 11: Meshes used in our experiments (left-right, top-bottom): Awakening (multiple resolutions); Bimba (1M triangles); David head
(20M triangles); Elephant (3M triangles); Eros (950K triangles); Lucy (7M triangles); Hand (65K triangles, subdivided up to 4M); Fertility
(27K triangles, subdivided up to 7M); Nicolo (2M triangles); Ramesses (2M triangles); Isidore Horse (2M triangles); and Dragon (7M
triangle original mesh, and a 2M triangle downsampling). Data set also includes multiple resolutions of the Neptune mesh, seen in Figure 7.

Figure 10: Performance analysis for successively higher sub-
divisions of the Fertility mesh (top) and higher resolution recon-
structions of the Neptune scans (bottom): running times and mem-
ory consumptions of the resolution 643 and 1283 volumetric solver
(with local refinement) are compared against the hat solver.

want to explore more robust methods for rounding translations in
order to ensure that two cones do not get rounded to the same lat-
tice position. Finally, we would also like to explore a more adap-
tive discretization in which the resolution of the grid can be refined
around cones in order to minimize the effects of triangle collapse.

References

AKSOYLU, B., KHODAKOVSKY, A., AND SCHRÖDER, P. 2005.
Multilevel solvers for unstructured surface meshes. SIAM Jour-
nal of Scientific Computing 26, 1146–1165.

BEN-CHEN, M., GOTSMAN, C., AND BUNIN, G. 2008. Con-
formal Flattening by Curvature Prescription and Metric Scaling.
In Computer Graphics Forum, vol. 27, Blackwell Synergy, 449–
458.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3, 77.

CHUANG, M., LUO, L., BROWN, B., RUSINKIEWICZ, S., AND
KAZHDAN, M. 2009. Estimating the laplace-beltrami operator
by restricting 3d functions. In Proceedings of the Symposium on
Geometry Processing, Eurographics Association, 1475–1484.

CLARENZ, U., DIEWALD, U., AND RUMPF, M. 2000. Anisotropic
geometric diffusion in surface processing. In Visualization ’00:
Proceedings of the 11th IEEE Visualization 2000 Conference
(VIS 2000), 497–405.

DANIELS, J., SILVA, C., AND COHEN, E. 2009. Semi-regular
quadrilateral-only remeshing from simplified base domains. In
Computer Graphics Forum, vol. 28, Blackwell Publishing Ltd,
1427–1435.

DANIELS, J., SILVA, C. T., AND COHEN, E. 2009. Local-
ized quadrilateral coarsening. Computer Graphics Forum 28,
5, 1437–1444.

DAVIS, T., AND HAGER, W. 2005. Row modifications of a sparse
cholesky factorization. SIAM Journal on Matrix Analysis and
Applications 26, 3, 621–639.

DONG, S., BREMER, P., GARLAND, M., PASCUCCI, V., AND
HART, J. 2006. Spectral surface quadrangulation. ACM Trans.
Graph. 25, 3, 1057–1066.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY,
M., AND STUETZLE, W. 1995. Multiresolution analysis of
arbitrary meshes. Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, 173–182.

GU, X., AND YAU, S. 2003. Global conformal surface parameter-
ization. Symposium on Geometry Processing, 127–137.

HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh param-
eterization: Theory and practice. SIGGRAPH Course Notes.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
Cover: Surface Parameterization using Branched Coverings.
Computer Graphics Forum 26, 3, 375–384.



KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. Computer Graphics Forum (SGP 2006)
25, 61–70.

KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Glob-
ally smooth parameterizations with low distortion. ACM Trans.
Graph. 22, 3, 350–357.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.
1998. Interactive multi-resolution modeling on arbitrary meshes.
In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, 105–114.

KOVACS, D., MYLES, A., AND ZORIN, D. 2009. Anisotropic har-
monic quadrangulation. In Symposium on Geometry Processing
2009 Poster.

LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND
DOBKIN, D. 1998. MAPS: multiresolution adaptive parame-
terization of surfaces. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM
New York, NY, USA, 95–104.

MARINOV, M., AND KOBBELT, L. 2005. Automatic generation
of structure preserving multiresolution models. In Computer
Graphics Forum, vol. 24, Amsterdam: North Holland, 1982-,
479–486.

PIETRONI, N., TARINI, M., AND CIGNONI, P. 2009. Al-
most isometric mesh parameterization through abstract domains.
IEEE Transactions on Visualization and Computer Graphics 99,
RapidPosts.

PIETRONI, N., TARINI, M., SORKINE, O., AND ZORIN, D. 2011.
Global parametrization of range image sets. ACM Transactions
on Graphics (TOG) 30, 6, 149.

RAY, N., AND LEVY, B. 2003. Hierarchical least squares confor-
mal map. In Pacific Graphics, 263.

RAY, N., LI, W., LÉVY, B., SHEFFER, A., AND ALLIEZ, P. 2006.
Periodic global parameterization. ACM Trans. Graph. 25, 4,
1460–1485.

RUGE, J., AND STUEBEN, K. 1987. Algebraic multigrid. 73–130.

SCHENK, O., GÄRTNER, K., FICHTNER, W., AND STRICKER,
A. 2001. PARDISO: A high-performance serial and parallel
sparse linear solver in semiconductor device simulation. Journal
of Future Generation Computers Systems 18, 69–78.

SCHNEIDER, R., AND KOBBELT, L. 2001. Geometric fairing of
irregular meshes for free-form surface design. Computer Aided
Geometric Design 18, 359–379.

SHEFFER, A., PRAUN, E., AND ROSE, K. 2006. Mesh param-
eterization methods and their applications. Foundations and
Trends R© in Computer Graphics and Vision 2, 2, 171.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast
multigrid algorithm for mesh deformation. ACM Transactions
on Graph (SIGGRAPH ’06) 25, 3, 1108–1117.

SPRINGBORN, B., SCHRÖDER, P., AND PINKALL, U. 2008. Con-
formal equivalence of triangle meshes.

TARINI, M., PIETRONI, N., CIGNONI, P., PANOZZO, D., AND
PUPPO, E. 2010. Practical quad mesh simplification. Computer
Graphics Forum 29, 2.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN,
M. 2006. Designing quadrangulations with discrete harmonic
forms. Symposium on Geometry Processing, 201–210.

ZHANG, M., HUANG, J., LIU, X., AND BAO, H. 2010. A wave-
based anisotropic quadrangulation method. ACM Transactions
on Graphics (TOG) 29, 4, 1–8.


