Volumetric Basis Reduction for Global Seamless Parameterization of Meshes

Introduction

In this supplement, we describe how to construct positional and
translational functions for satisfying the seam constraints. We as-
sume that we are given a mesh M and a set of (oriented) seams
o € X with associated rotations r € {1,i,—1, —i} satisfying r;-1 =
rgl. For a given choice of consistent translations shifts across
seams, {t5} C C (with ;-1 = —rg 1), our goal is to define a func-
tion space making it easy to express functions F : M — C that sat-
isfy the following condition:

Seam Constraint (Mesh): For any point p on any seam o, the
limits of the function values as we approach the point p from below
and above the seam satisfy:

lim F(p") =rg ( lim F(p*)) +tg,
pr—=p P —p

where 14 is the prescribed translation across ©.

Local Domain Graph

We consider a single basis function B : M — C, suppressing its in-
dex for simplicity as in the paper. This function is supported on the
open, connected region D, which we cut into components with the

seams in X:
Jbi=D-Jo.
i o€Er

Using region D;’s indicator function y;(p), we can decompose
B(p) into a sum of individual basis functions B;(p) = x;(p)B(p)
as in the paper.

We define D’s local domain graph, §p, with nodes v € V(Sp) corre-
sponding to the components D, and with edges {v,w} for any two
regions sharing a seam (i.e. D, ND,,No # 0). Gp is a directed
graph since we care about the direction in which we cross a seam,
but because its edges always come in pairs e = {v,w},e~! = {w,v},
we pretend that it is undirected when discussing spanning trees and
cycles.

For convenience, we consider functions on Gp’s vertices that are
equivalent to the mesh functions spanned by B; due to the mapping:

{V(Sp)=>C} — {M—=C}
Flvi — F(p)= Z F(v)B,(p). (1)
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Now we can replace the seam constraints for a function on the mesh
with the constraint that F : V(SGp) — C satisfies:

Seam Constraint (Graph): For any edge {v,w} =e € E(Sp) we
must have:
F(w) =ryoyF (v) +1g(0)

where £(e) € X is the seam corresponding to edge e.!

Notation: Given a path 7 C E(Sp) and given an edge along the
path, e € 7, we denote by 7, and 7" the two halves of the path on
either side of e:

nT=moeom, .

Note that this formulation implicitly assumes that the basis functions
form a partition of unity.

Definition: We define the product of rotations along the path & C
E(Sp) as:

R(TC) = H ré(e).

ecm

For consistency, we set R(0) = 1.

Definition: Similarly, for a given seam o € X, we define:

1 ifo={(e)
T°(n) = Y R(%,) )85, with 8o, = —rg! ifo=1L(e")
een 0 otherwise

For consistency, we set 7° (0) = 0.

Proof of Proposition 1:  Letting 7, o 7r; denote the concatenation
of two paths, and letting 7! denote the reverse of a path, we have:

) T°(mom)=R(m)T°(m)+T°(m)
Rx H)=R Yr) T°(x )= -R ' (n)T°(x)
1 7% 'om)=0. )

Thus, the definitions of R(7) and T (x) are homotopy-invariant.

Proof of Proposition 2

Once we know graph function F’s value on some vertex u € Gp, the
seam constraints for the edges of a spanning tree, §p, determine the
values at all v € §p because Gp is strongly connected. We show that
these values are given by

F(v) = cuFu(v)+ Z toF7 (v), 3
oex

with positional and translational functions F, and F;® defined be-
low. Of course, when Gp # Gp (because of cycles), there will be
an additional constraint added by each “undirected” edge not in this
spanning tree, but this is not considered for Proposition 2.

Traversing a path 7, in Gp from u to v, we accumulate a rotation
of R(m,,) and a contribution of T°(m,,) to t5’s coefficient. This
motivates the following definitions:

Fy(v) = R(mw), EZ(v)= —, “4)

which indeed satisfy the constraints as we prove in Lemma 1.
Since all paths on tree Gp are homotopy equivalent and R(,,) and
T°(m,,) are homotopy-invariant, these functions are uniquely de-
fined. The division by two is needed because of our redundant use
of both 75 and 74-1: for every edge e € m,,, we accumulate not only
translation 7y, but also the identical translation —ry(,)ty(,-1y-

Lemma 1. Function F(v) in (3) with translational and positional
functions from (4) satisfies every seam constraint in Gp.



Proof. Taking any {v,w} =e € E(Gp),

T°(eomyy,)
2

Fo T8 () + O,
:%w%W+Zw@—%ﬂ—ﬁ
ock

F(w) = cuR(eomy,)+ Z te
cexr

TO(R) | | toe) ~ Tee)le(e )
2 + 2

= rg(e) CMR(TL'VM) + Z to
[

= 1) F (V) + 140,

so we see that the edge’s constraint is satisfied. O

Completing the Proof: Picking u = 0, corresponding to the ref-
erence domain Dy, and applying mapping (1), the constrained mesh
function can be written as:

F(p)=)

J

=co |:ZR(777j0)

J

C()R(n'j() + Z to
oexr

(;JO)} Bj(p)

%O)BJ (p):| ’

revealing B and l?l‘f) . as presented in Proposition 2.

+Zla|:2
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Accounting for Cycles in §p

The constraints on edges EY° := E(Sp) \ E(Sp) (if any exist) gen-
erally remain unsatisfied by (3): for {v,w} = e € E9°

~ T° Toou
r((e)F(V)thf(e) =Tie) |:CMR(”VM)+ E,Z[U (2 ) +ye)
c
T (T -
# cuR () + Y t(;% =F(w).
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However, we can construct a new graph function F satisfying this
constraint. The clearest way is to first traverse back to the source
vertex u on both sides of the constraint by following ;!

T°(m,l oeom,,)

cuR(m, oeom,)+ Y i 3

oeX
To-( wu o ”WM)

! _
= cuR(m, o my) + Z te 5

oex

=cy.

Rearranging, we arrive at the linear equality constraint on the posi-
tional and translational coefficients:

alR(E) - 1)+ L 1e o) Lo,

oex

where {, = Wul oeo Ty, is the cycle formed by adding edge e to Gp.
Note that if R({,) = 1, positional coefficient ¢, disappears from the
constraint, and we’re left with a constraint on the translation vari-
ables, 7, only. However, when R({,) # 1, we choose to eliminate
¢, using the constraint:

Cy = o

(Cf cex

In doing this, we remove F;’" (mesh function B) as a distinct basis
function, but we fold its contribution into the translational basis

functions that ¢,, depends on.

We repeat this procedure for every e € EYC, collecting all trans-
lational coefficient constraints into a linear system. We then solve
for a set of independent translations, #, for n € Ii’n 4 determining
dependent translations #; for d € I(’i ep by a linear combination:
tg = ZHGI,{M wantn. For convenience, we extend this weight ma-
trix W to compute all translations (z,, for m € I;” Im YL ep) by
adding rows wy,; = 8un (Kronecker delta) for m,n € Il

If all cycles have R(C,) = 1, our final graph function F is given by
expressing F in terms of the independent translations ¢,, for n € L

F( )—Cu u + Z Z Winnltn F‘u@n(v)

mell,, | nell,,

=)+ Y | Y wanFE"(v)

n€liy | mely

Here we used the fact that each translational coefficient ¢, corre-
sponds to some seam Gy,. If any of the cycles has R({,) # 1, elimi-
nating the positional coefficient ¢, gives:

Fo)=Y | Y twm |:FMG’”(V)+

T T
mely, | n€ly,
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n€ly mely,
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By mapping these into mesh functions and repeating for each gen-
eral basis function B, we arrive at Proposition 3.



