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Abstract

Direct digital manufacturing is a set of rapidly evolving technolo-
gies that provide easy ways to manufacture highly customized and
unique products. The development pipeline for such products is
radically different from the conventional manufacturing pipeline:
3D geometric models are designed by users often with little or no
manufacturing experience and sent directly to the printer. Structural
analysis on the user side with conventional tools is often unfeasible
as it requires specialized training and software. Trial-and-error, the
most common approach, is time-consuming and expensive.

We present a method to identify structural problems in objects de-
signed for 3D printing based on geometry and material proper-
ties only, without specific assumptions on loads and manual load
setup. We solve a constrained optimization problem to determine
the “worst” load distribution for a shape that will cause high local
stress or large deformations. While in its general form this opti-
mization has a prohibitively high computational cost, we demon-
strate that an approximate method makes it possible to solve the
problem rapidly for a broad range of printed models. We validate
our method both computationally and experimentally and demon-
strate that it has good predictive power for a number of diverse 3D
printed shapes.
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1 Introduction
We present an algorithm approximating the solution of the follow-
ing problem: From the shape of an object and its material proper-
ties, determine the easiest (in terms of minimal applied force) ways
to break it or severely deform it.
Our work is largely motivated by applications in 3D printing. The
cost of 3D printing has decreased significantly over the past few
years, and the industry is undergoing a rapid expansion, making
customized manufacturing in an increasingly broad variety of ma-
terials available to a broad user base. While many of the users are
experienced creators of digital 3D shapes, engineering design ex-
pertise is far less common, and widely used 3D modeling tools lack
accessible ways to predict the mechanical behavior of a 3D model.
There are a number of reasons why a 3D model cannot be manu-
factured or is likely to fail:
(1) the dimensions of thin features (walls, cylinder-like features,
etc.) are too small for the printing process, resulting in shape frag-
mentation at the printing stage;
(2) the strength of the shape is not high enough to withstand gravity
at one of the stages of the printing process;
(3) the printed shape is likely to be damaged during routine han-
dling during the printing process or shipment;
(4) the shape breaks during routine use.
In most cases, the first problem is addressed by simple geometric
rules ([Telea and Jalba 2011]), and the second is a straightforward
direct simulation problem. Our focus is on the other two problems.
On the one hand, many 3D printed objects are manufactured with
a specific mechanical role in mind, and full evaluation is possible
only if sufficient information on expected loads is available. On the
other hand, jewelry, toys, art pieces, various types of clothing, and
gadget accessories account for a large fraction of products shipped
by 3D printing service providers. These objects are often expected
to withstand a variety of poorly defined loads (picking up, acciden-
tal bending or dropping, forces during shipping, etc.).
To predict structural soundness of a printed object, we look for
worst-case loads, within a suitably constrained family, that are most
likely to result in damage or undesirable deformations. A direct for-
mulation results in difficult nonlinear and nonconvex optimization
problems with PDE constraints. We have developed an approxi-
mate method for this search, reducing it to an eigenproblem and a
sequence of linear programming problems.
We demonstrate experimentally that our approach predicts the
breaking locations and extreme deformations quite well. While pri-
marily designed for 3D printing applications, our method can be
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applied in any context where loads are unpredictable and structural
weaknesses need to be identified.

2 Related work
Computational analysis of structural soundness of mechanical parts
and buildings is broadly used, but almost always in the context of
known sets of loads. While engineers routinely need to evaluate
soundness of structures and mechanisms under worst-case scenar-
ios, in most cases, worst-case loads are designed empirically for
specific problems (e.g., construction of buildings to withstand loads
from flooding or earthquakes). Automatic methods are less com-
mon: an important set of methods in the context of modeling un-
der uncertainty is based on the idea of anti-optimization (e.g., [El-
ishakof and Ohsaki 2010]). Our work is partially inspired by these
concepts.
In aerospace engineering, filter-based methods were developed to
predict worst-case gusts and turbulence encountered by an airplane.
E.g., [Zeiler 1997; Fidkowski et al. 2008] model the aircraft’s re-
sponse to turbulence as a linear filter’s response to Gaussian white
noise. From this model, a worst-case noise sample and resulting
strain are obtained.
In the context of analysis tailored to 3D printing applications of the
type considered in this paper, the closest work to ours is [Stava et al.
2012]. The paper proposes to evaluate 3D shapes in two main sce-
narios to discover structure weakness: applying gravity loads and
gripping the shape using 2 fingers at locations predicted by a heuris-
tic method. This set of fixed usage scenarios is often insufficient to
expose the true structure weakness for many printed shapes, as dis-
cussed in greater detail in Section 5. The paper also describes meth-
ods for automatic improvement of objects. [Telea and Jalba 2011]
focuses on purely geometric ways to evaluate whether a structure
is suitable for 3D printing based on empirical rules formulated by
the 3D printing industry ([Z CORPORATION 2011], [Shapeways
2011]).
Structural stability for simple furniture constructed from rigid
planks connected by nails is analyzed at interactive rates in
[Umetani et al. 2012]. Their system also suggests corrections when
shapes with poor stability are detected.
A number of recent works address various aspects of computational
design for 3D printing. [Bickel et al. 2010] provide a pipeline to
print objects in a composite material that reproduces desired defor-
mation behavior. To achieve this goal, the authors accurately model
the nonlinear stress-strain relationship of their printing materials
and how printed models will respond to imposed loads. The space
of deformations is a user-supplied input, and structural soundness
of the design with respect to other loads is not considered. While
some specialized work on CAD for 3D printing exists, (e.g., the
system for heterogeneous material design [Kou and Tan 2007]),
overwhelmingly, standard tools with little or no analysis support
are used.
[Luo et al. 2012] proposes a framework to decompose 3D shapes
into smaller parts that can be assembled without compromising the
physical functionality of the shape so that larger objects can be
printed using printers with a small working volume. They use a
standard finite element simulation to estimate stress of the input
shape under gravity in a user specified upright orientation. Other
works aim to print articulated models that maintain poses under
gravity but do not require manual assembly. [Calı̀ et al. 2012] de-
signs and fits a generic, parametrized printable joint template based
on a ball and socket joint. Their joint provides enough internal fric-
tion and strength to hold poses and survive manipulation, but they
tune its parameters experimentally instead of using a physically-
based optimization. [Bächer et al. 2012] designs a similar ball and
socket joint and a hinge joint. An approximate geometric optimiza-
tion of stresses is performed by maximizing certain cross-sectional
areas of the joint.
3D printing has also been used to reproduce appearance: [Hašan

et al. 2010] and [Dong et al. 2010] optimize the layering of base
materials in a 3D multi-material printer to print objects whose sub-
surface scattering best matches an input BSSRDF.
Our method relies on using eigenmodes of the shape. Modal analy-
sis has proven useful in many contexts. The use of Laplacian eigen-
modes of simple shapes for computation predates computers [Tim-
oshenko and Woinowsky-Krieger 1940] and has a long history in
model order reduction for a variety of applications including non-
linear elasticity (e.g., [Nickell 1976]). In graphics literature, [Pent-
land and Williams 1989] first introduced eigenmodes as a basis
suitable for simulation applications, and more recently, a number
of deformation-related algorithms based on eigenmode bases were
proposed, e.g., [Hauser et al. 2003; Barbič and James 2005; Barbič
and James 2010].
At the same time, experimental modal analysis (applying periodic
forces with different frequencies and measuring displacements at
various points) is broadly used to detect structural damage [Ewins
2000].
Finally, [Pratt et al. 1998] presents an overview of several simu-
lations and experiments exploring how printing parameters (build
orientation, layer thickness, scan path and speed, temperature, etc.)
affect the accuracy and strength of simple shapes. The goal of these
works is to evaluate and improve printing technology itself rather
than detecting or fixing deficiencies in the input shape.

2.1 3D printing processes

To motivate the design of our structural analysis process, we briefly
review the most commonly used 3D printing processes and the
types of structural problems one can expect. The most relevant as-
pects of 3D printing processes for structural analysis are the me-
chanical characteristics of materials produced at different stages
and typical loads on the object during and after the production pro-
cess.
Common single-stage 3D printing processes either deposit the liq-
uid material only in needed places (e.g., FDM) or deposit material
in powder form layer-by-layer and then fuse or harden it at points
inside the object (e.g., stereolithography uses photosensistive poly-
mers, and laser sintering fuses regular polymers by heat).
These processes typically use flexible polymers with large elas-
tic and plastic zones in their stress-strain curves. These polymers
rarely break if geometric criteria for printability are satisfied, but
they can undergo large plastic deformations.
Printing metal, ceramics, and composite materials often involves
multiple stages. For example, the object may be printed layer-by-
layer in metal powder with polymer binder. At the next stage, the
binder is cured in a furnace, resulting in a green state part, and
at the last stage, the metal is fused in a furnace and extra metal
is added. Green state is brittle and has low strength, so parts in
this state are easily damaged. A simpler multistage process is used
for relatively brittle composite materials, e.g., gypsum-based mul-
ticolor materials: a second curing stage is used to give the material
additional strength. Both the green state and the final material are
relatively brittle. Whenever binding polymer is mixed layer-by-
layer with a different material, the resulting material is likely to be
highly anisotropic.
To summarize, both brittle and ductile materials are of importance.
The former requires predicting where the material is likely to break,
and the latter requires predicting extreme deformations likely to be-
come plastic. Due to the layer-by-layer nature of the printing pro-
cess, anisotropy is common and needs to be taken into account.
Some of the loads even during production stages are hard to predict
and quantify.
Goals. These considerations lead to several possible structural anal-
ysis goals, unified by a common theme of identifying worst-case
loads in a family of loads satisfying some constraints (bounds on
total force, pressure, direction etc.). The worst-case load is under-
stood to be the one that leads to maximal damage, which can be



measured by a norm of stress, maximal displacements, and various
functions of these quantities.

3 Worst-case structural analysis
Next, we present a formal description of the problem. This formula-
tion is computationally intractable, but it is needed as a foundation
for a practical approximate version described in Section 4.
Linear elasticity. We use an anisotropic linear material model and
the linear elasticity equations to model object behavior for the pur-
poses of determining weak spots and worst-case force distributions.
This model is adequate for some materials used in 3D printing,
but nonlinear models may be necessary for others, as discussed in
greater detail in Section 6. We emphasize that a distinction should
be made between simulation with given loads used to determine
precise stress distributions and computation used to determine ap-
proximate worst-case loads: lower accuracy is acceptable for the
latter. We briefly review the standard elasticity equations to intro-
duce notation. The stress-strain relationship is linear, and stress is
related linearly to displacement:

σ = C : ε ε =
1

2

(
∇u+∇uT

)
, (1)

where ε is the strain tensor, σ is the stress tensor, and u is the dis-
placement. C is the rank-4 elasticity tensor, Cijlm, and the no-
tation C : ε denotes application of this tensor to the strain tensor
ε,
∑
l,m Cijlmεlm. We discuss the choice and effects of elasticity

tensor C in greater detail in Section 6. We assume an orthotropic
material, for which the tensor Cijlm has up to 9 independent pa-
rameters. In a coordinate system aligned with the material axes, if
we represent C as a 6 × 6 matrix acting on vectors of components
of the symmetric strain tensors [ε11, ε11, ε33, 2ε23, 2ε31, 2ε12], its
inverse is given by

1
Y1

− ν21Y2 − ν31Y3 0 0 0

− ν12Y1
1
Y2

− ν32Y3 0 0 0

− ν13Y1 − ν23Y2
1
Y3

0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G31 0
0 0 0 0 0 1/G12


where Yi are directional Young’s moduli,Gij are shear moduli, and
νij are Poisson ratios for different pairs of directions, satisfying
νij/Yi = νji/Yj .
For dynamic linear problems with volume force density F , the
equation of motion is

∇ · σ = F + ρü, (2)

where ρ is the density, and the dot signifies the time derivative. We
are primarily interested in static problems, but as we use modal
analysis at an intermediate stage, we retain the term ρü.
Equation 2 is subject to boundary conditions: we primarily use a
surface force density FS , which is captured by the condition σn =
−FS on the boundary of the object. If the object is attached to a
rigid support, Dirichlet conditions u = 0 can be imposed on a part
of the boundary.
If the equation of motion (2) is written directly in terms of displace-
ment u, we get

∇ ·
(
C :

1

2
(∇u+∇uT )

)
:= Lu = F + ρü. (3)

Rigid motion, torque and translation constraints for static
problems. If the object is not fixed at least at 3 non-collinear points,
an arbitrary force distribution will result in motion of the whole ob-
ject. As we are interested in considering unknown forces with no
assumptions on attachment, we need to be able to eliminate global

motion. We achieve this by imposing zero total force and zero total
torque constraints, which can be written as

∫
Ω

FdV +

∫
∂Ω

FSdA = 0,∫
Ω

F × (x− xc)dV +

∫
∂Ω

FS × (x− xc)dA = 0.

(4)

Displacements enter into this system only in the form Lu, and the
operator L has infinitesimal rigid motions in its nullspace. To have
a unique solution in u, we impose a zero rigid motion constraint,
similar to total torque and force constraints:∫

Ω

udV = 0,

∫
Ω

u× (x− xc)dV = 0. (5)

Surface force model. In cases of interest, the only volume force
is gravity. In all but most extreme cases, gravity does not have a
major effect, so we concentrate on surface forces. We restrict the
forces in three ways.
• Only positive normal forces allowed: FS = −pn, where n

is the surface normal, and p is pressure, thus ignoring fric-
tion. This is an important assumption, as for most situations
described in Section 2.1, friction forces are likely to be signif-
icantly lower than normal forces. At the same time, it is hard
to model the bounds on ratios between normal and tangential
components accurately in the absence of detailed knowledge
of loads and surfaces. Without such bounds, any optimization
is likely to produce unrealistic tangential results. Similarly,
negative surface forces (e.g., electrostatic attraction), are not
likely to play a major role and are excluded.

• Pointwise pressure is bounded: p < pmax. If a pressure may
be unbounded, an arbitrarily high stress may be produced at
a point on the surface. While highly concentrated forces are
possible, these are rare, and we assume that a realistic bound
on surface pressure is available.

• The total force is fixed. Again, by increasing the total force,
arbitrarily high stresses can be obtained.

For example, if our primary target is simulating manual handling
situations, one can bound the force by a typical force a human can
apply by squeezing, and the maximal pressure is derived from the
size of the finger tips.
Problem formulation. It remains to specify the objective func-
tion. One commonly used measure of interest is maximal principal
stress, maxΩ maxi=1,2,3 |σi|, where σi are the eigenvalues of the
stress tensor. The complete problem of finding the worst-case force
distribution satisfying the constraints of our model and optimizing
this objective function, has the form

max
Ω

max
i=1,2,3

|σi| → max;

Lu = 0 on Ω, C : (∇u+∇uT )n = pn on ∂Ω,∫
∂Ω

pndA = 0,

∫
∂Ω

pn× (x− xc)dA = 0,∫
Ω

udV = 0,

∫
Ω

u× (x− xc)dV = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω

pdA = Ftot.

(6)

Maximal principle stress is a suitable measure if we are interested
in failure of materials, which occurs when the stress in a direction
exceeds a bound. For plastic transition, the norm or some other
function of the deviatoric stress, σ − 1

3
trσI , may be of interest.



We make an interesting observation when the material is isotropic
and C can be written as Y Ĉ, where Y is the Young’s modulus, and
Ĉ is nondimensional, depending only on the Poisson ratio. Then
maximal stress does not depend on Y but only on the Poisson ratio.
Solving this problem yields the worst-case principal stress and, im-
portantly, the pressure distribution on the surface resulting in this
stress. The maximal stress makes it possible to evaluate the like-
lihood of damage during the production process, shipping or use.
Examining the pressure distribution makes it possible to evaluate
how likely such loads would be and determine how the structure of
the object can be strengthened.
We observe that all constraints in this problem are linear equality
and inequality constraints, i.e., the constraints are convex. At the
same time, the functional is highly non-linear (in fact, not smooth)
and non-convex. Replacing maximal principal stress with another
point measure maximized over the surface does not change the na-
ture of the problem.
A brute-force solution can be obtained by solving a sequence of
problems in which the objective functional max |σi|2 is maximized
for every point and then taking the maximum of all results. Because
we are interested in maximizing the norm, even these simpler per-
point problems remain nonconvex and nonlinear.
We conclude that solving the optimization problem in general form
is impractical, and due to non-linearities and non-convexity, any
optimization is likely to get stuck in local minima.
Extension to displacements. An obvious extension of the algo-
rithm is optimizing for maximal displacements. The main change
is replacing σ with u in the functional: maxΩ |u| → max. This
formulation is more relevant for flexible materials.

4 Efficient approximate algorithm

Overview. Figure 1 shows the main components of the efficient
approximate algorithm for solving (6).
There are two problems we need to address to make the solution of
(6) practical: (1) the need to solve an optimization problem for each
point of the object to determine which one results in minimal stress;
and (2) the nonlinearity and nonconvexity of each subproblem.
To address the first problem, we use a modal-analysis based heuris-
tic that we found to work remarkably well. The second problem is
solved by using trσ as the linear objective functional. The reasons
this substitution is possible for a broad range of cases are discussed
in detail below.
Modal analysis and weak regions. A crucial ingredient of our
method is modal analysis, which we use to restrict the part of the
object where we need to maximize the stress or another functional.
Computational modal analysis refers to computing eigenvectors
(eigenmodes) ui and eigenvalues λi of L:

Lui = λiui, i = 1, 2 . . . (7)

It is widely used in engineering and graphics for a variety of pur-
poses. In the context of structural analysis, the most common ap-
plication of modal analysis is to predict possible damage or defor-
mations in presence of vibrations.
Our idea is similar in spirit, however there is a significant differ-
ence. We do not consider vibrations, i.e., periodically changing
loads; rather, we consider static or quasi-static loads. We make the
following
Assumption 1: Examining a small number of eigenmodes allows
us to find all regions of an object where the stress may be high
under arbitrary deformation. While this observation is difficult to
prove mathematically, physical intuition suggests that vibrations of
an object at different frequencies will result in high stress in all
structurally weak regions of the object. Weak regions are those

where high maximal stress can be obtained with low energy den-
sity relative to other parts of the object.

To validate this assumption, we have performed a brute-force opti-
mization on a number of models (Figure 7) and compared with the
results obtained using weak regions only. We obtain a remarkably
good agreement in all cases.

We search for locations of potentially high stress by computing a
number, Mm, of eigenmodes and considering a fraction 1 − ε of
points with highest stress under these deformations.

We define weak regions to be the connected components of this set.
Each mode has multiple weak regions, typically associated with
local stress maxima. For each mode we select Mr weak regions.

Approximate convex problem. The second important change to
the problem is to replace the functional in (6) with a functional that
can be optimized efficiently and that is minimized by a similar pres-
sure distribution, p, to the original. We focus on the maximal stress,
although a similar approach can be used for other functionals. We
observe that almost invariably for any deformation and any com-
pressible material with Poisson ratio ν sufficiently different from
1/2:

For points where a principal stress is maximal, other principal
stresses are small relative to the principal stress.

We have performed a validation of this observation by running sim-
ulations with a variety of loads and computing the ratio of the max-
imal principal stress to |trσ|. Over 36 models tested, the average
ratio is 0.96 with standard deviation 0.25. Figure 2 illustrate that
the distributions of trace and maximal principle stress are visually
similar.

Figure 2: The top 10% volume of largest principal stress (left) and
largest trace (right) are visually similar

We observe that when this is true, the difference between |σmax| =
maxi=1,2,3|σi| and |

∑3
i=1 σi|, i.e., |trσ| is small, and we can ap-

proximate the maximal principal stress with the absolute value of
the trace.

As weak regions correspond to the highest stress area, and esti-
mated stress tends to have a significantly lower accuracy vs. dis-
placement, we use a weighted average of the stress over each weak
region. The choice of weighting, as long as it falls off towards the
boundary of the region, has relatively small effect on the result. We
choose the L2 norm of the stress computed from the eigenmode as
the weight w for averaging the stress trace over each weak region.
We also predict whether each point will stretch or compress under
the worst-case load by computing trσ under the modal displace-
ment. We choose w’s sign to match this quantity.

We finally arrive at the following approximate problem formula-
tion:

For each eigenmode i, i = 1 . . .Mm and each of its weak regions,
Dij , j = 1 . . .Mr , we solve the following linear programming



problem:

∫
wtrσdV → max w.r.t. u and p;

Lu = 0 on Ω, C : (∇u+∇uT )n = pn on ∂Ω,∫
∂Ω

pndA = 0,

∫
∂Ω

pn× (x− xc)dA = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω

pdA = Ftot.

(8)

Unlike the original problem, this problem has a unique solution that
can be computed efficiently using a convex solver.
Discretization and additional optimizations. We discretize the
problem in the simplest conventional way, using piecewise-linear
finite elements. The downside of this approach is that a suitable
tetrahedral mesh needs to be generated for each input. For 3D
printed models, the task is somewhat simplified: as the cost of print-
ing is dominated by the amount of material used, almost all objects
printed in practice are effectively thick shells to the extent this is
allowed by the structural requirements. For this reason, tet mesh-
ing does not increase the number of vertices used to represent the
object as much as one would expect.
Let n be the number of vertices, nb ≤ n be the number of boundary
vertices, and m be the number of elements. The discretized quan-
tities are: p the vector of pressures defined at boundary vertices of
dimension nb; and u, the vector of displacements of dimension 3n.
In discrete formulation, we optimize the functional

wTV DBu. (9)

In this formula, V is a 6m×6mmatrix, with the volume of element
j repeated 6 times on the diagonal for the 6 components of the stress
tensor. D is a 6m× 6m block-diagonal matrix. For each element,
the corresponding 6 × 6 block is the rank-4 tensor C in matrix
form. B is a 6m×3n applying the FEM discretization of∇+∇T .
Finally, wT is a vector that computes and weights the stress tensor
traces, so that wTV x discretizes

∫
Ω
wtrxdV .

The discretized static elasticity equation combined with boundary
conditions takes the form

−Ku +NAp = 0, (10)

where K is the standard FEM 3n × 3n stiffness matrix, K =
BTV DB. The matrix N is a 3n × nb matrix of components of
surface normals, returning per-vertex components of external forces
(0 for internal vertices, pn for the boundary), and matrix A is the
nb × nb diagonal vertex area matrix.
The discretized formulation of the total force and torque constraints
are:

ΣNAp = 0, ΣTNAp = 0, (11)

where Σ is the 3× 3n matrix, summing n 3D vectors concatenated
into a 3n vector, and T is 3n×3n block-diagonal matrix computing
the torques of the surface force vectors.
Putting all these together, the discretized optimization problem is:

w · (V DBu)→ max w.r.t. u and p;
−Ku +NAp = 0,

ΣNAp = 0,ΣTNAp = 0,

Σvu = 0,ΣvTvu = 0,

0 ≤ pi ≤ pmax for all i,
ΣsAp = Ftot,

(12)

where Σs sums scalars on the surface, Σv sums vectors in the vol-
ume Ω, and Tv computes torsion for each point. The total dimen-
sion of the problem is nb + 3n.
Eliminating displacements. As most of the degrees of freedom
in the system are displacements, but the quantities of interest are
pressures p, eliminating u results in significant speedups (u can be
eliminated even for the displacement maximization problem). The
elasticity equation −Ku + NAp = 0 is not sufficient for this; it
has a nullspace of dimension 6 corresponding to the rigid motion
degrees of freedom, so we need to consider the constraints for zero

total rigid motion, Ru = 0, where R =

[
Σv

ΣvT

]
. Rewriting this

system in the standard constrained system form,[
K RT

R 0

]
︸ ︷︷ ︸

C∗

[
u
λ

]
=

[
NAp

0

]
, (13)

where λ is the Lagrange multiplier for the constraint Ru = 0. It is
clear from physical considerations that this system is invertible. Let

S be the selection matrix
[
I3n×3n

0

]
. Then, we can express u as

u = STC∗−1SNAp. In this form, the objective of (12) becomes

w · V DBu = wTV DBSTC∗
−1
SNA︸ ︷︷ ︸

fT

p = fTp.

The displacement-free optimization problem is

fTp→ max w.r.t. p,
ΣNAp = 0, ΣTNAp = 0,

0 ≤ pi ≤ pmax for all i,
ΣsAp = Ftot.

(14)

While the final system has only sparse constraint matrices, it may
appear that computing fT for the objective functional requires in-
verting C∗; we observe however that wTV DBSTC∗−1SNA =
fT can be rewritten as f = (SNA)Tq, where q is the solution of
the equation

C∗
T
q = SBTDTV Tw. (15)

In other words, it is sufficient to be able to solve a linear system
with matrix C∗, and the cost of transforming (12) to (15) is the cost
of a single linear solve.
Finally, for modal analysis, we have observed that the results
for isotropic models in particular are well-approximated by sim-
pler eigenanalysis of the Laplacian, which yields a considerable
speedup (compare the bottom two rows of Figure 7).
Algorithm summary and parameters. The main steps of our ap-
proach are

1. Compute a tetrahedral mesh Ω for an input triangle mesh.
2. Compute Mm modes using an eigensolver.
3. For each mode, find Mr weak regions with highest total en-

ergy.
4. For each weak region, solve the problem (14) to obtain worst-

case pressure candidate pi.
5. SolveLu = 0, with boundary pressures specified by pi, to ob-

tain displacements ui, and compute actual maximal principal
stress σmaxi for each weak region.

6. Maximal stress is determined as maximum of σmaxi .
Tetrahedral meshes are generated using tetgen ([Si 2007]).
We use MOSEK ([MOSEK 2010]) to solve the linear program-
ming problem, UMFPACK ([Davis 2004]) for linear solves, and
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Figure 3: Histogram of the mode number (horizontal axis) in which
the weakest region appears for the first time.
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Figure 4: Histogram of the rank of the weakest region in the weak
region list sorted by decreasing energy.

ARPACK ([Lehoucq et al. 1998]) for computing eigenvectors and
eigenvalues.
The parameters of the algorithm include Mm, Mr , the choice of
threshold 1− ε for weak regions, and a user-defined maximal pres-
sure pmax (the latter can be regarded as a part of the definition of
the force model).
To determine reasonable choices of Mm and Mr , we have run
modal analysis for a large number of modes (150) and a large num-
ber of weak regions per mode for a collection of objects. For each
object and each mode, we found the weakest region and checked in
which mode it first appears. We also computed its rank in the list of
that mode’s weak regions sorted by decreasing energy. The results
(Figure 3 and Figure 4) indicate that 15 modes and 5 weak regions
per mode are sufficient in over 80% of cases.
We use ε = 0.025 in all cases; the dependence of the size of weak
regions for one mode on ε is shown in Figure 5.
Figure 6 shows two final results of the algorithm. Red arrows are
total forces obtained by summing nearby per-vertex force values
(pressures are typically concentrated in small areas). Colormaps on
the deformed surfaces show weakness maps.

Figure 5: Weak regions extracted from three modes with weakness
level cutoff, ε = .10, .05, .03, .01.

Figure 6: Optimal force vectors and weakest regions on the left,
resulting deformations and stresses on the right. The gray images
in the background show the undeformed state.

5 Validation
We performed validation of our algorithm in several computational
and experimental ways.
Comparison with direct search for the weakest region. Instead
of using the modal analysis stage to identify weak regions and us-
ing averaged stress or displacement over weak regions as the target
quantity to optimize, we can run the same optimization process di-
rectly, treating each tetrahedron as a potential weak region.
We define the weakness map as a scalar field on the surface mapping
each point to the maximal principal stress at this point obtained by
approximate optimization. Using our method yields a partial weak-
ness map on the union of all weakness regions we consider. Fig-
ure 7 shows a comparison of a complete weakness map, computed
using the brute-force approach, with the weakness map obtained by
our method. We observe a close agreement between these for all ex-
amples in areas where the partial map is defined and never observe
high stress values elsewhere.

# Tets Brute Force (s) Weak Region (s) Speedup

2723 681.367 1.089 625.939 x
2869 793.362 1.087 729.907 x
2904 894.610 0.641 1396.071 x
5332 2120.361 1.171 1810.199 x
11020 11029.721 2.729 4042.403 x
12853 11334.362 1.694 6692.546 x
14163 27775.900 3.373 8234.925 x
16008 19917.838 1.892 10527.388x

Table 1: Stress analysis timings for brute force optimization vs.
weak region optimization. While speedups are already dramatic for
extremely small element counts, the higher asymptotic complexity of
brute force causes a rapidly increasing speedup for larger models.

Dependence on tetrahedral mesh resolution. To keep the cost
of computation low, especially in the context of interactive appli-
cations or processing large number of objects at a printing facility,
using coarse tetrahedral meshes is desirable. As Figure 8 shows,
weakness maps for different resolutions are similar, so higher reso-
lution may be used only at the last stage, after the weakest spots are
identified.
Drop test. To verify our method for brittle materials, we performed
a randomized deformation test by dropping printed models onto
horizontal pegs. We dropped the models from 1m high, ensuring
a nearly random impact orientation and force application. The test
setup is pictured in Figure 9. All models were printed with material
zp150.
Specific breakages may have two origins: high point forces, which
can break even relatively strong spots near the impact point and will
vary across drops, and smooth deformations, which are likely to
break weak regions consistently. The former does not correspond to
typical usage scenarios, which feature distributed bounded forces.
Thus, we consider only fractures occurring frequently across drops.
The test results, displayed in Figure 10, confirm that the weak re-
gions determined by our method generally agree with the areas with



Brute force

Laplacian

Sti�ness

Analysis Type Star Star Pendant “Test 2”

Brute Force 18.300 MPa 36.767 MPa 73.298 MPa
Laplacian 15.593 MPa 34.151 MPa 71.689 MPa
Stiffness 16.208 MPa 35.939 MPa 70.588 MPa

Figure 7: Comparison of the similar optimum stresses found by
brute force, Laplacian-based weak region analysis, and stiffness-
based weak region analysis. The table reports 99.75 percentile (by
volume) element stresses. An isotropic metal material was used for
this comparison.

Figure 8: For 5 different mesh resolutions (from left to right, the
vertex counts are 5K, 13K, 24K, 36K, 50K), the algorithm generates
consistent weakness maps.

highest occurrence of fracture. Notice in particular the legs of the
cow (3rd row, left), the notches of the gear (5th row, left), the arms
of the dancer (1st row, right), and the inner piece of the powercog
pendant (6th row, left). These are all regions of high weakness map
value that break consistently.

Figure 9: We used models printed in green state “sandstone” for
the drop tests. The testing models often are covered with a loose
layer of powder that shakes off upon impact (see the dust in the
right image).

Displacement test. For the objects printed in ductile materials, we
performed a different test. We placed the shapes into a cardboard
box filled with packaging material and applied pressure to the box’s
exterior. This pressure permanently deformed the models inside.
We took photographs of the deformed models in a registered po-
sition and compared them to the 3D model from which they were
printed. We observe good agreement with the computed map of
maximal displacements, i.e., the map similar to the weakness map,
but for the displacement maximization problem (see Figure 11).

Comparison with [Stava et al. 2012]. We compare to the approach
described in [Stava et al. 2012], as they also aim to predict the loads
that a printed model is likely to experience. The authors use a more
specific force model: pinch grips. They present an empirical model
to predict how the object will be gripped with two fingers. There
are many designs for which such a grip does not capture typical use
cases or mishaps. Figure 12 demonstrates shapes whose worst-case
loads cannot be applied or approximated using only a pinch grip.

Figure 13 shows three examples for which the authors of [Stava
et al. 2012] have provided us their force application points. Their
“cup” example (left) is an excellent candidate for the pinch grip;
the highest stress achieved with a fixed total force agrees with ours
and even exceeds it. However, the other two objects do not fit their
model as well. The “UFO” pinch grip is clearly suboptimal, and
the forces applied to the bracelet would have much more leverage
if they were moved to the open endpoints. In all three cases, our
method generates efficient force vectors.

An interesting observation about the “cup” model is that our method
produces a triangle of forces (perhaps at the expense of higher
stress) rather than a pair of opposite forces. One possible reason
for this is the pressure bound requiring the force to be distributed
over a larger area.

Timings. Though our pipeline has not yet reached interactive
speeds, it is already fast enough to be included in a 3D printing
pipeline. For the sizes of models most commonly sent to 3D print-
ing services (see distribution in Figure 15: sizes on the order of
100K vertices are most common), our full algorithm takes only a
few minutes:

# Tets Structural Analysis (mins)

2723 0.028
42900 0.308
70356 0.382
155383 2.566
322398 9.601
414894 4.490

Analyzing the algorithm’s scaling behavior is complicated by its
dependence on structural properties—a separate linear program is
run for each weak region that is extracted. To make sense of the tim-
ings, they have been separated by stage. Modal analysis and weak
region extraction are run only once per model, and Figure 14 shows
how their execution times depend on element count. The time spent
setting up and solving the linear programs (“weakness analysis”) is
averaged over all weak regions so that it can be plotted against the
same x axis. Note that there is one further cost not shown: the single
sparse UMFPACK factorization. This timing depends strongly on
matrix structure (despite using fill-in reducing permutations), and
adds noise to curves when included. Factorization time is included
in the timing table above.

6 Material properties

Material parameters defining the elasticity tensor C must be mea-
sured for each of the 3D printers’ materials. We have observed
that the computed maximal stress does not depend on the magni-
tude of the Young’s modulus in the isotropic case. However, in the
anisotropic case, it does depend on the ratios of directional elasticity
moduli, which can be significant (Figure 16). To predict breakage



Figure 10: Results for a drop test. Model volume is shaded with its weakness map percentile: 90% 99%



Reference

Deformed

Figure 11: Simulation results (left) are compared to the deformed
3D printed model (green) overlaid on an undeformed one (blue).
Our algorithm predicts likely regions (red) of large deformation
under normal handling. For the blade earring, we confirm that
the largest blade deforms little relative to the hook and shaft: after
aligning the shafts to be parallel, the largest blades are also roughly
parallel (see the yellow parallelograms). The second largest blade
is displaced more. Note that the upper right pin of the deformed
spinnoloid (middle row, green) was broken during printing.

Figure 12: Models where pinch grips cannot generate worst-case
loads. Our method finds highly intuitive force vectors, regardless.
The additional arrows on the top of the Skyrim dragon arise to bring
the total force and torque to zero.

or plastic deformations under loads, the additional material param-
eters tensile strength and yield strength are needed.

In this section, we present the Youngs modulus ratio measurements
for three different 3D printing materials that we used to compute
our simulation’s elasticity parameters. In addition, we discuss the
extent to which various materials match our assumptions on stress-
strain linearity and what accuracy one can expect from predictions

Figure 13: Comparison against [Stava et al. 2012]. Our algo-
rithm’s force distribution (top) better identifies structural weakness,
especially for the ufo (middle) and bracelet (right).
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Figure 14: The top plots shows how modal analysis and weak re-
gion extraction scale with the number of tetrahedra. The dominant
cost is the eigensolve. The bottom plots shows the average cost of
setting up and running the linear program for each weak region. It
excludes the UMFPACK factorization of C∗ that only must be run
once.

of the maximal stress to tensile strength ratio. In all cases, we as-
sume a Poisson ratio of 0.3.

We have tested three materials used in 3D printing: nylon (PA
2200 by EOS Electro Optical Systems), “sandstone” (zp150 used
in the ZPrinter series by 3D Systems), and green state stainless
steel (420SS powder bound with proprietary binder used by Ex-
One). They also represent different classes of materials (brittle vs.
ductile, isotropic vs anisotropic).

To determine their properties, we conducted a three point bending
test consistent with ASTM standard D5032 ([ASTM 2007]), us-
ing the Instron 5960 universal testing machine with a ±100N load
cell and a support span of 40mm. Figure 17 illustrates the testing
setup. The testing samples are rectangular bars with length 60mm
and thickness between 1mm and 5mm. A relatively thin test bar
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dered from Shapeways.

Figure 16: Different ratios of directional Young’s moduli can lead
to different weakest regions. We show the weakest region found for
a truss with a Young’s modulus that is five times higher in the X
(left), Y (middle), and Z (right) directions.

was chosen because structurally weak models are likely to contain
thin features.

Figure 17: Three-point bending test on green state stainless steel.

Among the three materials tested, green state stainless steel fits the
definition of brittle material the best. Stress grows linearly with
strain for all samples tested (Figure 18 left). Bending tests in per-
pendicular directions show that elastic moduli in these directions
are close, with the average Young’s modulus 3.59GPa and standard
deviation 0.27GPa. Figure 19 shows critical stress extracted from
measurements, which is mostly consistent for all samples, with the
average 6.88MPa and 0.62MPa standard deviation. Overall, this
material is consistent with our model for stress optimization.
Models printed in nylon are known to withstand a large range of
deformations. Figure 18 (right) shows the stress vs strain curve for
18 nylon samples. Half of them are 1.5mm thick, and the other half
are 2mm. For each thickness group, sets of 3 samples were printed
along each of X,Y and Z directions. From the results, we observed
that nylon samples typically have a very large elastic deformation
range before entering the plastic stage. We also note a moderate
but obviously present degree of anisotropy (the Young’s modulus
for X is 0.80GPa with 0.13GPa deviation, for Y is 1.02GPa with
0.18GPa deviation, and for Z is 0.98GPa with 0.12GPa deviation).
See Figure 18, right.
The most complex material we tested is the “sandstone.” Though,
like green state metal, it has a relatively low tensile strength, it
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Figure 18: Left: Stress vs strain curve measured on samples in
green state stainless steel. The colors indicate different sample
thickness (1.5mm red, 2mm green, 3mm blue). Right: Stress vs
strain plots for nylon testing samples of thickness 1.5mm and 2mm.
The samples printed in different orientation are marked with differ-
ent colors (red: X, green: Y, blue: Z).
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Figure 19: The critical stress distribution of green state metal for
samples with thickness 1.5mm up to 5mm.

exhibits a significant plastic region (Figure 20) and very high de-
gree of anisotropy: we measured X, Y, and Z Young’s moduli
of 1.22GPa (standard deviation 0.13GPa), 0.68GPa (standard de-
viation 0.07GPa), and 0.234GPa (standard deviation 0.02GPa) re-
spectively, with more than 5 times difference between the largest
and smallest values. Thus, we model it as an orthotropic material
with a distinct Young’s modulus per printing axis. We obtain our
shear moduli using a standard formula from [SolidWorks 2011]:
Gxy =

ExEy
Ex+Ey+2Eyνxy

. Note that “sandstone” exhibits a large
variability of tensile strength, even for a single direction. This
means only very conservative predictions are possible. Neverthe-
less, we observe that our weak region detection works well (Figure
10).
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Figure 20: Stress vs. strain measurements on rectangular bars
printed with green state “sandstone” along the printer X (red),Y
(green) and Z (blue) direction. Different printing directions influ-
ence the material properties significantly.



7 Conclusions
We have presented an efficient approximate method for determining
worst-case loads for a geometric object based on its geometry and
material properties only. The method is quite reliable (it relies on
a linear solver, an eigensolver, and a convex solver, which all can
provide convergence guarantees), efficient, and approximates well
the worst-case stress and displacement distributions.
At the same time, there is clearly a number of limitations. Most
importantly, only linear elasticity is considered, and the optimized
solution at the second stage may not match reality for large plastic
deformations. We note, however, that the robustly obtained approx-
imate solution can serve as a starting point for a nonlinear solver.
More generally, 3D printed materials exhibit a broad range of com-
plex behaviors, some of which may exhibit considerable variation
even for the same printing process. Using computational models
reflecting material complexity and uncertainty is an important fu-
ture direction. From the point of view of robustness of the method,
tetrahedral mesh generation is the bottleneck. Meshless techniques
may yield a fully robust pipeline using only surface geometry as
input.
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