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1 Polar Decomposition

A square n × n complex matrix A has two polar decompositions: the standard right polar decomposition
A = UP and the left polar decomposition A = P`U (also known as the reverse polar decomposition).
Here U is a unitary matrix, and P and P` are positive semidefinite matrices. Intuitively, the right polar
decomposition expresses any linear map as a stretching along n orthogonal axes followed by a norm-preserving
transformation—e.g. a rotation/reflection. In the left polar decomposition, these steps’ order is reversed.

1.1 Existence

The polar decomposition can be found using the SVD (though there are also numerical methods to compute
it directly), which exists for all A:

A = WΣV ∗,

where W and V are unitary and Σ is a real, diagonal matrix with nonnegative entries. Inserting the n× n
identity in the form of V ∗V or W ∗W we see:

A = WV ∗V ΣV ∗ := UP, A = WΣW ∗WV ∗ := P`U,

with U = WV ∗, P = V ΣV ∗, and P` = WΣW ∗.

1.2 Uniqueness (for Nonsingular A)

Assume another right polar decomposition exists (uniqueness of the left decomposition is proved analogously):

A = UP = U2P2.

“Squaring” both sides:
A∗A = P ∗P = P ∗2 P2

Taking the square root of both sides, which is unique because P and P2 are positive semidefinite, this implies:

P = P2

So even if A is singular, the stretching part is unique. If A is nonsingular, P must also be, and

UP = U2P =⇒ U = U2,

proving the full polar decomposition is unique.
However, if A is singular, then P must also be singular. In this case, an arbitrary rotation/reflection can

be applied to P ’s nullvectors by U , provided U keeps them orthogonal to vectors from P’s column space. So
U is not unique in this case (though its action on P ’s column space still is).
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2 Real Matrix Case

When A is a real matrix, matrices W and V of the SVD are also real, making U , P , and P` all real. This
means the unitary transformation U is actually an orthogonal transformation.

Since det(P ) ≥ 0,
det(U) = sgn(det(A))

when A is nonsingular. This means, U is a rotation when A’s determinant is positive and a reflection when
it is negative.

3 Closest Unitary Matrix

We prove that the polar decomposition gives us the closest unitary matrix to A in the Frobenius norm sense:

‖A− U‖2F < ‖A−X‖2F ∀X ∈ U(n), X 6= U.

Furthermore, this shortest distance is actually

‖A− U‖2F =
∑
i

(σi − 1)2,

where σi are the singular values of A.

3.1 Proof

First note:

‖A− U‖2F = tr((A− U)∗(A− U)) = ‖A‖2F − 2 tr(A∗U) + tr(I) = ‖A‖2F − 2 tr(P ) + tr(I), (1)

since A∗U = P by the (right) polar decomposition. Likewise:

‖A−X‖2F = ‖A‖2F − 2 tr(A∗X) + tr(I) (2)

Subtracting (2) from (1):
‖A− U‖2F − ‖A−X‖2F = 2 tr(A∗X − P )

Using the eigenvalue decomposition P = V ΛV ∗:

‖A− U‖2F − ‖A−X‖2F = 2 tr(V ΛV ∗U∗X − V ΛV ∗)

= 2 tr(ΛV ∗U∗XV − ΛV ∗V ) = 2 tr(ΛY − Λ)

= 2
∑
i

λi(Yii − 1) = 2
∑
i

λi(Re(Yii)− 1)

where Y = V ∗U∗XV is some unitary matrix, meaning Re(Yii) ≤ 1. Since P is positive semidefinite (λi ≥ 0),
this sum obviously obtains its maximum (of zero) only when Re(Yii) = 1:

‖A− U‖2F − ‖A−X‖2F ≤ 0 =⇒ ‖A− U‖2F ≤ ‖A−X‖2F .

Moreover, equality happens only when

Y = V ∗U∗XV = I

U∗X = V V ∗ = I

X = U,

proving the inequality.
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Finally,

‖A− U‖2F = ‖A‖2F − 2 tr(P ) + tr(I) =
∑
i

σ2
i − 2λi + 1

but notice
A∗A = P ∗P =⇒ V Σ2V ∗ = V Λ2V ∗ =⇒ λi = ±σi (3)

by uniqueness of eigenvalues. So, since P is positive semidefinite, λi = σi, and we have:

‖A− U‖2F =
∑
i

σ2
i − 2σi + 1 =

∑
i

(σi − 1)2

4 Closest Rotation

In the case that A is real and det(A) > 0, the polar decomposition U is a rotation, and it is therefore the
closest rotation to A. When det(A) = 0, an SVD can be computed such that WV T is a rotation (the sign
for the left and right nullspace basis vectors can be chosen arbitrarily). However, when det(A) < 0, U must
be a reflection. For U to be a rotation when det(A) < 0, P would need to have an odd number of negative
eigenvalues. This is easy enough to do—simply flip some signs in the SVD used to derive A = UP—but
unfortunately our proof from 3.1 no longer applies. It’s unclear how to maximize over Yii under the constraint
that Y is a rotation. In particular, it’s not obvious that the optimal Yii must all be ±1 (though it turns out
that they still are).

We resort to finding the closest rotation by a constrained minimization:

min
R∈Rn×n

‖A−R‖2F s.t. RTR = I, det(R) = 1.

The corresponding Lagrangian is:

L(R,M,m) = ‖A−R‖2F + tr((RTR− I)TM) +m(det(R)− 1),

where m is a single Lagrange multiplier, and M is a symmetric matrix of Lagrange multipliers (one per
unique equation in the symmetric RTR = I constraint). Differentiating with respect to M and m just
recovers the constraints, but differentiating with respect to R gives:

∂L
∂R

= −2
∂ tr(ATR)

∂R
+
∂ tr((RTR)M)

∂R
+m

∂ det(R)

∂R
= −2A+ 2RM +m det(R)[R−1]T

!
= 0.

The differentiation rules used here are proved in Appendix A.
Since the constraints must be satisfied at the optimum, we can plug in det(R) = 1 and [R−1]T = R:

2A = 2RM +mR =⇒ A = R
(
M +

m

2
I
)
.

This means that an optimal rotation R puts A in a very similar form to the polar decomposition: A = RB,
where B =

(
M + m

2 I
)

is a symmetric matrix. Using eigendecomposition B = QΛQT ,

ATA = BTB = QΛ2QT .

As in (3), λi = ±σi, with the particular signs determined by R. Encoding the signs in diagonal matrix S so
that λ = Siiσi, we see that the optimal distance must be of the form:

‖A−R‖2F = ‖RQΛQT −R‖2F = tr(Λ2 − 2Λ + I) =
∑
i

(λi − 1)2 =
∑
i

(Siiσi − 1)2. (4)

Furthermore, any assignment of signs multiplying to −1 is obtained by some rotation R. To see this, consider
arbitrary signs, Λ = SΣ, det(S) = −1:

A = WΣV T = W (SV TV S)ΣV T = (WSV T )︸ ︷︷ ︸
R

(V ΛV T )︸ ︷︷ ︸
B

, (5)
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and det(R) = det(A)/ det(B) = 1. In other words, we can find an optimal R by optimizing over Sii = ±1.
Since σi > 0, each negative sign increases distance (4) by 4σi, and the optimal sign assignment must

negate only the single smallest singular value. Choosing these optimal signs, Sii =

{
1 i < n

−1 i = n
(assuming

singular values are sorted in decreasing order), (5) gives the closest rotation R = WSV T .

Appendix A Matrix Derivatives

Here we prove the three matrix derivatives we used on the Lagrangian.
First [

∂ tr(ATR)

∂R

]
ij

=
∂(AklRkl)

∂Rij
= Aklδikδjl = Aij .

Second,[
∂ tr((RTR)M)

∂R

]
ij

=
∂(RklRkmMml)

∂Rij
= (δkiδljRkm+Rklδkiδmj)Mml = RimMmj+RilMjl = [R(M+MT )]ij ,

so when M is symmetric, ∂ tr((RTR)M)
∂R = 2RM .

Finally, [
d det(R)

dR

]
ij

=
d

dε

∣∣∣∣
ε=0

det(R+ εei ⊗ ej) =
d

dε

∣∣∣∣
ε=0

det(R) det(I + εR−1ei ⊗ ej).

Recalling d
dε

∣∣
ε=0

det(I + εA) = tr(A) (all of the off-diagonal entries end up appearing only in ε2 and higher

order terms of the determinant, and
∏
i(1 + εAii) = 1 + εΣiAii +O(ε2)),

1

det(R)

[
d det(R)

dR

]
ij

= tr(R−1ei ⊗ ej) = δkmR
−1
kl [ei ⊗ ej ]lm = R−1kl [ei ⊗ ej ]lk = R−1kl δliδkj = [R−1]ji.

So d det(R)
dR = det(R)[R−1]T .
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