Analytic Eigensystems for Isotropic Membrane Energies

Julian Panetta

August 8, 2019

This document follows the approach of [2] to derive the Hessian eigenvalues and eigenmatrices for isotropic membrane energy densities $\psi(F)$, where F is a 3×2 deformation gradient. We assume that the energy is expressed in terms of the following generalizations for 3×2 matrices of the 2×2 tensor invariants ${ }^{1}$

$$
\begin{aligned}
I_{1}^{3 \times 2} & :=\sigma_{1}+\sigma_{2} \\
I_{2}^{3 \times 2} & :=F: F=\sigma_{1}^{2}+\sigma_{2}^{2} \\
I_{3}^{3 \times 2} & :=\sigma_{1} \sigma_{2} .
\end{aligned}
$$

In these definitions, σ_{1} and σ_{2} are the singular values of F obtained from the singular value decomposition:

$$
F=U \underbrace{\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]}_{\Sigma} V^{T} \quad U \in O(3), V \in O(2) .
$$

We note that the third column of U is the deformed surface normal $\hat{\boldsymbol{n}}$.

1 Differentiating the SVD

We will need formulas for how U, Σ, and V change as F is perturbed with "velocity" \dot{F}, which we find by differentiating both sides of the SVD:

$$
\begin{equation*}
\dot{F}=\dot{U} \Sigma V^{T}+U \dot{\Sigma} V^{T}+U \Sigma \dot{V}^{T} \quad \Longrightarrow \quad U^{T} \dot{F} V=U^{T} \dot{U} \Sigma+\dot{\Sigma}+\Sigma \dot{V}^{T} V . \tag{1}
\end{equation*}
$$

Differentiating the relationships $U^{T} U=\mathrm{Id}_{3 \times 3}$ and $V^{T} V=\mathrm{Id}_{2 \times 2}$ reveals that $U^{T} \dot{U}$ and $\dot{V}^{T} V$ are skew symmetric and can be written as the infinitesimal rotations:

$$
U^{T} \dot{U}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right], \quad \dot{V}^{T} V=\left[\begin{array}{cc}
0 & -\alpha \\
\alpha & 0
\end{array}\right]
$$

Plugging these into (11), we obtain a formula for the infinitesimal rotations and singular value perturbations induced by \dot{F} :

$$
U^{T} \dot{F} V=\left[\begin{array}{cc}
\dot{\sigma_{1}} & -\left(\sigma_{2} \omega_{z}+\sigma_{1} \alpha\right) \tag{2}\\
\sigma_{1} \omega_{z}+\sigma_{2} \alpha & \dot{\sigma_{2}} \\
-\sigma_{1} \omega_{y} & \sigma_{2} \omega_{x}
\end{array}\right] .
$$

Geometrically, ω_{z} indicates a rotation of the surface element about the current normal $\hat{\boldsymbol{n}}$, while ω_{x} and ω_{y} are rotations around the principal stretch axes. When $\omega_{x}=\omega_{y}=0$, the deformed surface element simply rotates in-plane around $\hat{\boldsymbol{n}}$ (and $\hat{\boldsymbol{n}}$ does not change). However, nonzero ω_{x} and ω_{y} indicate that \dot{F} induces a rotation of $\hat{\boldsymbol{n}}$.

[^0]
1.1 Example Perturbations

According to 22, a perturbation of the form

$$
\dot{F}=U\left[\begin{array}{ll}
a & b \\
c & d \\
0 & 0
\end{array}\right] V^{T}
$$

leaves $\hat{\boldsymbol{n}}$ unchanged as it stretches/rotates the surface element in-plane. Specifically, we have $\dot{\sigma_{1}}=a, \dot{\sigma_{2}}=d$ and the following system for ω_{z} and α :

$$
\begin{align*}
\sigma_{2} \omega_{z}+\sigma_{1} \alpha & =-b \\
\sigma_{1} \omega_{z}+\sigma_{2} \alpha & =c \tag{3}
\end{align*}
$$

On the other hand, perturbation

$$
\dot{F}=U\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
e & f
\end{array}\right] V^{T}
$$

rotates the surface element's normal by angular velocities $\omega_{x}=f / \sigma_{2}, \omega_{y}=-e / \sigma_{1}$ without any in-plane stretch/rotation.

2 Gradients of the Invariants

We can now use the formulas for $\dot{\sigma_{1}}$ and $\dot{\sigma_{2}}$ to differentiate the invariants:

$$
\begin{aligned}
\frac{\partial I_{1}^{3 \times 2}}{\partial F}: \dot{F}=\dot{\Sigma}:\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left(U^{T} \dot{F} V\right):\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\dot{F}:\left(U\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] V^{T}\right) & \Longrightarrow \frac{\partial I_{1}^{3 \times 2}}{\partial F}=U\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] V^{T}, \\
\frac{\partial I_{3}^{3 \times 2}}{\partial F}: \dot{F}=\dot{\Sigma}:\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right]=\left(U^{T} \dot{F} V\right):\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right]=\dot{F}:\left(U\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right] V^{T}\right) \Longrightarrow & \Longrightarrow \frac{\partial I_{3}^{3 \times 2}}{\partial F}=U\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right] V^{T}, \\
\frac{\partial I_{2}^{3 \times 2}}{\partial F}: \dot{F}=2 F: \dot{F} & \Longrightarrow \frac{\partial I_{2}^{3 \times 2}}{\partial F}=2 F
\end{aligned}
$$

3 Hessians of the Invariants

We evaluate the Hessian applied to an arbitrary perturbation \dot{F}. First, the easy invariant:

$$
\frac{\partial^{2} I_{2}^{3 \times 2}}{\partial F^{2}}: \dot{F}=2 \dot{F}
$$

which means $\frac{\partial^{2} I_{2}^{3 \times 2}}{\partial F^{2}}$ is a multiple of the fourth order identity tensor. Any orthogonal basis can be chosen as a set of eigenmatrices, and their corresponding eigenvalues are all 2.

Next, we consider $I_{1}^{3 \times 2}$:

$$
U^{T}\left(\frac{\partial^{2} I_{1}^{3 \times 2}}{\partial F^{2}}: \dot{F}\right) V=U^{T} \dot{U}\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \dot{V}^{T} V=\left[\begin{array}{cc}
0 & -\left(\omega_{z}+\alpha\right) \\
\omega_{z}+\alpha & 0 \\
-\omega_{y} & \omega_{x}
\end{array}\right]
$$

We plug in $\dot{F}=U\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right] V^{T}$ and note that summing the equations in (3) yields $\omega_{z}+\alpha=\frac{c-b}{\sigma_{1}+\sigma_{2}}$. Thus:

$$
\frac{\partial^{2} I_{1}^{3 \times 2}}{\partial F^{2}}: \dot{F}=U\left[\begin{array}{cc}
0 & \frac{b-c}{\sigma_{1}+\sigma_{2}} \\
\frac{c-b}{\sigma_{1}+\sigma_{2}} & 0 \\
\frac{e}{\sigma_{1}} & \frac{f}{\sigma_{2}}
\end{array}\right] V^{T}
$$

From this expression, we see there is a three dimensional null space with $e=f=0$ and $b=c$. We can pick the following orthonormal basis for this subspace:

$$
\frac{1}{\sqrt{2}} U\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] V^{T}, \quad \frac{1}{\sqrt{2}} U\left[\begin{array}{cc}
1 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right] V^{T}, \quad \frac{1}{\sqrt{2}} U\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] V^{T} \quad(\lambda=0)
$$

We further deduce the three eigenmatrices with nonzero eigenvalues:

$$
\underbrace{\frac{1}{\sqrt{2}} U\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 0
\end{array}\right] V^{T}}_{\lambda=\frac{2}{\sigma_{1}+\sigma_{2}}}, \quad \underbrace{U\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right] V^{T}}_{\lambda=\frac{1}{\sigma_{1}}}, \quad \underbrace{U\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] V^{T}}_{\lambda=\frac{1}{\sigma_{2}}} .
$$

Finally, we consider $I_{3}^{3 \times 2}$:

$$
U^{T}\left(\frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}: \dot{F}\right) V=U^{T} \dot{U}\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\dot{\sigma}_{2} & 0 \\
0 & \dot{\sigma}_{1} \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right] \dot{V}^{T} V=\left[\begin{array}{cc}
\dot{\sigma}_{2} & -\left(\sigma_{1} \omega_{z}+\sigma_{2} \alpha\right) \\
\sigma_{2} \omega_{z}+\sigma_{1} \alpha & \dot{\sigma}_{1} \\
-\sigma_{2} \omega_{y} & \sigma_{1} \omega_{x}
\end{array}\right] .
$$

Again plugging in $\dot{F}=U\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right] V^{T}$ and using the formulas from Section 1.1 we find:

$$
\frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}: \dot{F}=U\left[\begin{array}{cc}
d & -c \\
-b & a \\
\frac{\sigma_{2}}{\sigma_{1}} e & \frac{\sigma_{1}}{\sigma_{2}} f
\end{array}\right] V^{T}
$$

We deduce the following eigenmatrices and eigenvalues:

We note that for all invariants, four of the six Hessian eigenmatrices are simply padded versions of the 2D eigenmatrices from [2], while the last two are new and concern the rotation of the surface element's normal.

4 Example: Incompressible neo-Hookean Sheet

We consider the membrane energy of a thin sheet of incompressible neo-Hookean material [1]:

$$
\psi_{\mathrm{IncNeo}}\left(F_{3 \mathrm{D}}\right)=\frac{\mu}{2}\left(\operatorname{tr}\left(F_{3 \mathrm{D}}^{T} F_{3 \mathrm{D}}\right)-3\right)=\frac{\mu}{2}\left(I_{2}^{3 \mathrm{D}}-3\right)
$$

When the sheet experiences an in-plane deformation gradient $F \in \mathbb{R}^{3 \times 2}$, it stretches or compresses in the normal direction to maintain $J=1$. We can solve for the normal stretch as $\frac{1}{I_{3}^{3 \times 2}}$ and express $\psi_{\text {IncNeo }}$ directly in terms of F 's invariants:

$$
\psi_{\text {sheet }}(F)=\frac{\mu}{2}\left(I_{2}^{3 \times 2}+\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{2}-3\right)
$$

The Hessian of this energy density is:

$$
\begin{aligned}
\frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}} & =\frac{\mu}{2}\left[\frac{\partial^{2} I_{2}^{3 \times 2}}{\partial F^{2}}+6\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{4} \frac{\partial I_{2}^{3 \times 2}}{\partial F} \otimes \frac{\partial I_{2}^{3 \times 2}}{\partial F}-2\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3} \frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}\right] \\
& =\mu\left[\operatorname{Id}_{4}+3\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{4}\left(U\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right] V^{T}\right) \otimes\left(U\left[\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{1} \\
0 & 0
\end{array}\right] V^{T}\right)-\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3} \frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}\right]
\end{aligned}
$$

We note that $\frac{\partial I_{2}^{3 \times 2}}{\partial F}$ is orthogonal to all but two of the eigenmatrices of $\frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}$ (and eigenmatrices for the fourth order identity tensor Id_{4} can be chosen arbitrarily), so we immediately get the following four eigenpairs:

$$
\underbrace{\frac{1}{\sqrt{2}} U\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 0
\end{array}\right] V^{T}}_{\lambda=\mu-\mu\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3}}, \underbrace{\frac{1}{\sqrt{2}} U\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] V^{T}}_{\lambda=\mu+\mu\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3}}, \quad \underbrace{U\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right] V^{T}}_{\lambda=\mu-\mu\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3} \frac{\sigma_{2}}{\sigma_{1}}}, \underbrace{U\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] V^{T}}_{\lambda=\mu-\mu\left(\frac{1}{I_{3}^{3 \times 2}}\right)^{3} \frac{\sigma_{1}}{\sigma_{2}}} .
$$

Because $\frac{\partial I_{2}^{3 \times 2}}{\partial F}$ is generally not orthogonal to either of the remaining two eigenmatrices of $\frac{\partial^{2} I_{3}^{3 \times 2}}{\partial F^{2}}$ (whose eigenvalues are distinct) we must diagonalize the projection of $\frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}$ onto their span to obtain the final two eigenpairs. We obtain simpler expressions using the basis $D_{1}:=U\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] V^{T}$ and $D_{2}:=U\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right] V^{T}$ for this subspace, which results in the reduced Hessian:

$$
\left[\begin{array}{ll}
D_{1}: \frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}: D_{1} & D_{1}: \frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}: D_{2} \\
D_{2}: \frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}: D_{1} & D_{2}: \frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}: D_{2}
\end{array}\right]=\mu\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{\mu}{\left(I_{3}^{3 \times 2}\right)^{4}}\left[\begin{array}{cc}
3 \sigma_{2}^{2} & 2 I_{3}^{3 \times 2} \\
2 I_{3}^{3 \times 2} & 3 \sigma_{1}^{2}
\end{array}\right] .
$$

The eigendecomposition of this 2×2 matrix can be expressed by introducing quantities $\beta:=3\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right)$ and $\gamma:=\sqrt{16\left(I_{3}^{3 \times 2}\right)^{2}+\beta^{2}}$:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
\beta-\gamma \\
4 I_{3}^{3 \times 2}
\end{array}\right], \quad \lambda_{1}=\mu+\mu \frac{3 I_{2}^{3 \times 2}+\gamma}{2\left(I_{3}^{3 \times 2}\right)^{4}}, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
\beta+\gamma \\
4 I_{3}^{3 \times 2}
\end{array}\right], \quad \lambda_{2}=\mu+\mu \frac{3 I_{2}^{3 \times 2}+\gamma}{2\left(I_{3}^{3 \times 2}\right)^{4}}
$$

making the final two eigenpairs of $\frac{\partial^{2} \psi_{\text {sheet }}}{\partial F^{2}}$:

$$
\underbrace{U\left[\begin{array}{cc}
\beta-\gamma & 0 \\
0 & 4 I_{3}^{3 \times 2} \\
0 & 0
\end{array}\right] V^{T}}_{\lambda=\mu+\mu \frac{3 I_{2}^{3 \times 2}+\gamma}{2\left(I_{3}^{3 \times 2}\right)^{4}}}, \quad \underbrace{U\left[\begin{array}{cc}
\beta+\gamma & 0 \\
0 & 4 I_{3}^{3 \times 2} \\
0 & 0
\end{array}\right] V^{T}}_{\lambda=\mu+\mu \frac{3 I_{2}^{3 \times 2}-\gamma}{2\left(I_{3}^{3 \times 2}\right)^{4}}}
$$

Note that these eigenmatrices do not have unit norm and should be normalized.

References

[1] Javier Bonet and Richard D Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge university press, 1997.
[2] Breannan Smith, Fernando De Goes, and Theodore Kim. Analytic eigensystems for isotropic distortion energies. ACM Trans. Graph., 38(1):3:1-3:15, February 2019.

[^0]: ${ }^{1}$ The I_{2} invariant used here is from [2]; the other standard definition of principal invariant $I_{2}=\frac{1}{2}\left(\operatorname{tr}(A)^{2}-\|A\|_{F}^{2}\right)$ actually coincides with I_{3} in the 2D case

