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This document follows the approach of [2] to derive the Hessian eigenvalues and eigenmatrices for isotropic
membrane energy densities ¢)(F'), where F is a 3 x 2 deformation gradient. We assume that the energy is
expressed in terms of the following generalizations for 3 X 2 matrices of the 2 x 2 tensor invariantsﬂ

3x2 .,
177" =01+ 02

3x2 ., . 2 2
;7% :=F:F=o0]+0;
I§><2 = 0109.

In these definitions, o1 and o9 are the singular values of F' obtained from the singular value decomposition:

g1 0
F=U|0 o VT Ue€0O@B),Veco?2).
0 0
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We note that the third column of U is the deformed surface normal 7.

1 Differentiating the SVD

We will need formulas for how U, ¥, and V change as F is perturbed with “velocity” F, which we find by
differentiating both sides of the SVD:

F=UsvT+usvt +usv? — UTFV =UTUS +2 +32VTV. (1)

Differentiating the relationships UTU = Idsyxs and VIV = Idyyo reveals that U T and VTV are skew
symmetric and can be written as the infinitesimal rotations:

) 0 —w. wy _ 0 —a
Uto=|w, 0 —w.|, vy = L 0 } )
—Wwy Wy 0

Plugging these into , we obtain a formula for the infinitesimal rotations and singular value perturbations
induced by F":

) o1 — (02w + 0100)
UTEFV = |oqw, + 090 o9 . (2)
—O01Wy O2Wy

Geometrically, w, indicates a rotation of the surface element about the current normal n, while w, and w,
are rotations around the principal stretch axes. When w, = w, = 0, the deformed surface element simply
rotates in-plane around 7 (and 7 does not change). However, nonzero w, and w,, indicate that F induces a
rotation of n.

IThe I invariant used here is from [2]; the other standard definition of principal invariant Iy = %(tr(A)2 — ||Al|%) actually
coincides with I3 in the 2D case
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1.1 Example Perturbations

According to 7 a perturbation of the form

) a b
F=Ulc d|lVT
0 0

leaves 1 unchanged as it stretches/rotates the surface element in-plane. Specifically, we have o1 = a, ds = d
and the following system for w, and «:
oW, + o010 = —b
(3)

o1Ww, + o0 = ¢

On the other hand, perturbation

) 0 0
F=U|0 oflVT
e f
rotates the surface element’s normal by angular velocities w, = f/o2,w, = —e/oy without any in-plane

stretch /rotation.

2 Gradients of the Invariants

We can now use the formulas for o7 and &y to differentiate the invariants:
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3 Hessians of the Invariants

We evaluate the Hessian applied to an arbitrary perturbation F. First, the easy invariant:

2]’3><2 . .
38;2 :F =2F,

2713X2
which means 88% is a multiple of the fourth order identity tensor. Any orthogonal basis can be chosen as

a set of eigenmatrices, and their corresponding eigenvalues are all 2.
Next, we consider 1372

92I3%2 | {r oo L o] 0 —(w. + )
UT<(%£2 :F>VUTU 0 1|4+ 1]0 1| V'V=w.+a 0
0 0 0 0 —Wy Wy
. a b
We plugin F =U |c¢ d| VT and note that summing the equations in yields w, + a = 05122. Thus:
e f
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From this expression, we see there is a three dimensional null space with e = f = 0 and b = ¢. We can pick
the following orthonormal basis for this subspace:

1 1 0 1 1 0 1 0 1
—vulo 1|vf, —ulo —-1|vT, —U |1 olVT (A=0)
V2 0 0 V2 0 O V2 0 0
We further deduce the three eigenmatrices with nonzero eigenvalues:
1 0 -1 0 0 0 0
—Uul1t o|VvT, uUlo olvT, uUlo o|lvT
V2 0 O 1 0 0 1
A=sr¥es A=gt A=
Finally, we consider I3 *?:
92[3%2 . o2 0 oo O oy 0 G2 — (01w + 0200)
UT< 81:12 :F>VUTU 0 ol +10 a1l +[0 o1| VIV = |0oow, +01a 01
0 0 0 O 0 O — 02wy T1Wy
) a b
Again plugging in F =U |[c¢ d| VT and using the formulas from Section |I.1} we find:
e f
d —c
2 13X%2
L p_v| b o VT
oOF? 92 oLy
g1 g2
We deduce the following eigenmatrices and eigenvalues:
1 10 1 0 -1 1 1 0 1 0 1
—vulo 1|vr, —vul1 o|vT, —ulo —-1|vT, —uUu|1 o|VT,
V2 1o o V2 1o o 2 1o o V2 1o o
A=1 A=—1

We note that for all invariants, four of the six Hessian eigenmatrices are simply padded versions of the 2D
eigenmatrices from [2], while the last two are new and concern the rotation of the surface element’s normal.

4 Example: Incompressible neo-Hookean Sheet

We consider the membrane energy of a thin sheet of incompressible neo-Hookean material [I]:
wlncho(F3D) = g (tr(F:;I;)F3D) - 3) = g (123D - 3)

When the sheet experiences an in-plane deformation gradient F' € R3*2, it stretches or compresses in the
normal direction to maintain J = 1. We can solve for the normal stretch as 15’% and express YmeNeo directly

1 2
wshcct(F) = 2 ISXZ . ( 3><2> -3
2 I

in terms of F'’s invariants:
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The Hessian of this energy density is:

3213><2 1 4 813><2 8IB><2 1 3 32]3X2
2 +6 2@ —2—- -2 =
OF? 32) “oF © oF 52) "or?

82@/}sheet _ ﬁ
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=pu m4+3(ﬁw> U0 o|VI|@|U|0 o VT —( ) 3
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0 0 0 0 I3 or
aIzx? . . . 92 13%2 . .
We note that == is orthogonal to all but two of the eigenmatrices of 52— (and eigenmatrices for the

fourth order identity tensor Id4 can be chosen arbitrarily), so we immediately get the following four eigenpairs:

1 0 —1 1 0 1 0 0 0 0
—vul1r o|vt —ul1 o|lVvE, w©lo oVl , U©Ulo o|VT
V2 0 O V2 0 0 10 0 1
3 3 3 3
AZ#*#(@%) A:H‘F,U‘(Igﬁ) /\Z}L*H(ﬁ) Z—? )\:ufu(gﬁ) %
B oId*? . . .. . . *I3*?
ecause —g5— is generally not orthogonal to either of the remaining two eigenmatrices of ~5#z— (whose
eigenvalues are distinct) we must diagonalize the projection of % onto their span to obtain the final
1 0 0 0
two eigenpairs. We obtain simpler expressions using the basis D; :=U |0 0| VT and Dy :=U |0 1| V7T
0 0 0 0

for this subspace, which results in the reduced Hessian:

Dy : Lo . p DyﬁﬁquQ_NF ﬂ+ /L [wg myj
Dy : 32;&;1;;& :Dy Dy: 323;11;% . Do 0 1 (I§X2)4 2]§X2 30% '

The eigendecomposition of this 2 x 2 matrix can be expressed by introducing quantities 3 := 3(c3 — 0%) and
v :=4/16 (I§X2)2 + 5%

6—7} 3% ++ {ﬁ+7} 35 +4
Vi = ) )‘1:M+M75 Vo = ) >\2_M+M77
[4]5?’“ 9 (I§X2)4 4[5’X2 9 (I§x2)4

: : : 9% Ysneet .
making the final two eigenpairs of %.

p—=~v O B+~ 0
Ul o 4*|vh, vl o 45| vT.
0 0 0 0
273X2 3r3%2_,
A=ptp :(I%X;)l A:u—w:(lng)A;

Note that these eigenmatrices do not have unit norm and should be normalized.
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