
Additional Material: Elastic Textures for Additive Fabrication

1 Derivation of Periodic Homogenization
As outlined in Section 5 of the paper, the homogenization process proceeds by considering the solution of (3),
the displacement uε, as ε → 0. One approach in taking this limit is through two-scale asymptotic expansions
[All02, All92].

Two-scale analysis. The two-scale method is based on the ansatz that for small ε, the family of solutions uε,
parameterized by ε, can be written as

uε(x) =

∞∑
p=0

εpup

(
x,

x

ε

)
. (A1)

Each function up(x,y) separates its dependence on x (i.e. the smoothly varying, macroscopic part) from its
dependence on y = x/ε (the microscopic fluctuations), and is constrained to be periodic in y. Plugging the series
into (3), collecting coefficients of εp terms, and identifying each coefficient of εp as an individual equation, yields
a set of equations for up

ε−2 : −∇y · [C(y) : εy(u0)] = 0 (A2)

ε−1 : −∇y · [C(y) : (εy(u1) + εx(u0))]−
∇x · [C(y) : εy(u0)] = 0, (A3)

ε0 : −∇y · [C(y) : (εy(u2) + εx(u1))]−
∇x · [C(y) : (εy(u1) + εx(u0))] = f , (A4)

where subscripts x and y signify partial differentiation with respect to the x and y parameters. Here we made
repeated use of the chain rule, e.g. ∇u0

(
x, xε

)
= ∇xu0 +

1
ε∇yu0.

Equation (A2) is satisfied by a function independent of y, u0(x,y) ≡ u(x). Using this, (A3) implies a linear
relationship between εy(u1) and εx(u), which we can express with a rank 4 tensor F ,

εy(u1) = F : εx(u), (A5)

mapping macroscopic strain to microscopic fluctuation strain.
Equation (A4) uniquely determines u2 from u and u1 up to a rigid offset if and only if a compatibility condition

is met (the Fredholm alternative): the average of the left and right hand sides over the periodic cell Y must equal.
Integrating both sides over Y , we see that the∇y· term disappears by the Divergence theorem and the periodicity
of C(y) : (εy(u2) + εx(u1)), leaving

−∇x ·
∫
Y

C(y) : [εy(u1) + εx(u)] dy = |Y |f .

Using (A5)

−∇x ·
[(

1

|Y |

∫
Y

C(y) : F + C(y) dy

)
: εx(u)

]
= f , (A6)

Comparing this with (4) from the paper implies

CH =
1

|Y |

∫
Y

C(y) : F + C(y) dy (A7)
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Local microscopic displacement. It remains to determine rank 4 tensor F appearing in CH using (A3). Let ekl

denote the canonical basis for symmetric rank 2 tensors:

ekl =
1

2
(ek ⊗ el + el ⊗ ek)

where ek is the kth canonical basis vector. Then the macroscopic strain can be decomposed as εx(u) = [εx(u)]kle
kl.

Notice if Y-periodic wkl(y) satisfies:

−∇y · (C(y) : [εy(wkl) + ekl]) = 0, (A8)

then, by linearity, any u1 with εy(u1) = [εx(u)]klεy(w
kl) satisfies (A3):

−∇y · (C(y) : [εy(u1) + εx(u)]) = −[εx(u)]kl
[
∇y · (C(y) : [εy(wkl) + ekl])

]
= 0, (A9)

implying
Fpqkl = [εy(w

kl)]pq. (A10)

Plugging this into (A7), we get

CHijkl =
1

|Y |

∫
Y

Cijpq(y)[εy(w
kl)]pq + Cijkl(y) dy. (A11)

Thus, once we know each “fluctuation displacement” wkl, we can compute the homogenized elasticity tensor with
a simple integration over the base cell. We find these by solving the 6 cell problems

−∇y · (C(y) : [εy(wkl) + ekl]) = 0 in Y, (A12a)

wkl(y) Y -periodic, (A12b)∫
ω

wkl(y) dy = 0, (A12c)

one for each canonical basis tensor ekl. The last constraint is to fix the remaining translational degree of freedom;
since we only care about strain εy(wkl), we can arbitrarily choose to enforce 0 average displacement over the
microstructure geometry, ω.

In our single material setting,

C(y) =

{
Cbase if y ∈ ω,
0 otherwise

, (A13)

meaning that the cell problem formulation above actually involves delta functions, and the displacements outside
the microstructure can be arbitrary. However, we can avoid these problems by rephrasing the force balance as a
PDE over the microstructure geometry only:

−∇y · (Cbase : [εy(wkl) + ekl]) = 0 in ω, (A14a)

n̂ · (Cbase : [εy(wkl) + ekl]) = 0 on ∂ω \ Y, (A14b)

wkl(y) Y -periodic, (A14c)∫
ω

wkl(y) dy = 0. (A14d)

Finally, we can rewrite the average stress form of the homogenized tensor, (A11), in an energy-like form that
is more amenable to shape differentiation. First, note that (A11) can be rewritten as:

CHijkl =
1

|Y |

∫
ω

eij : C : [εy(w
kl) + ekl] dy. (A15)

Notice that, for an arbitrary periodic function φ(y), integration by parts tells us:∫
ω

εy(φ) : C : [εy(w
kl) + ekl] dy = −

∫
ω

φ ·
[
∇y ·

(
C : [εy(w

kl) + ekl]
)]

dy

+

∫
∂ω

φ ·
[
n̂ ·
(
C : [εy(w

kl) + ekl]
)]

dy = 0.

(A16)
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The volume integral and the ∂ω \ ∂Y portion of the boundary integral vanished because wkl solves the klth cell
problem, and the ∂ω∩∂Y portion vanished due to periodicity. Taking φ = wij , this shows (A15) can be rewritten:

CHijkl =
1

|Y |

∫
ω

[εy(w
ij) + eij ] : C : [εy(w

kl) + ekl] dy. (A17)

2 Shape Derivative of CH
ijkl

Due to its similarity to the self-adjoint compliance functional, (A17) has a surprisingly simple shape derivative.
Consider a perturbation of the shape’s boundary, δω, caused by advecting the boundary with an infinitesimal

velocity field v. The resulting variation of CHijkl for ij 6= kl (ij = kl gets an equivalent result by product rule):

δCHijkl =

〈
∂CHijkl
∂ω

, δω

〉
+

〈
∂CHijkl
∂wij

, δwij

〉
+

〈
∂CHijkl
∂wkl

, δwkl

〉
.

Consider the linear functional
〈
∂CH

ijkl

∂wij , ·
〉

on an arbitrary admissible perturbation of wij (periodic and with no

rigid translation component), φ:〈
∂CHijkl
∂wij

, φ

〉
= lim
h→0

d

dh

1

|Y |

∫
ω

(eij + e(wij + hφ)) : C : (ekl + e(wkl)) dy

Differentiating under the integral and using the linearity of strain, this is:〈
∂CHijkl
∂wij

, φ

〉
=

1

|Y |

∫
ω

e(φ) : C : (ekl + e(wkl)) dy = 0,

where we again used (A16). The same argument holds for
〈
∂CH

ijkl

∂wkl , φ

〉
, so we have

〈
∂CHijkl
∂wij

, δwij

〉
=

〈
∂CHijkl
∂wkl

, δwkl

〉
= 0

without solving an adjoint problem. Thus Reynold’s transport theorem gives the full shape derivative:

dCHijkl[v] := δCHijkl =

〈
∂CHijkl
∂ω

, δω

〉
=

1

|Y |

∫
∂ω

[
(eij + e(wij)) : C : (ekl + e(wkl))

]
v · n̂ dA(y).
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