
Computational Inverse Design of Surface-based Inflatables

Supplementary Material

Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benôıt Roman, Mark Pauly

This supplemental document provides more details on the implementation aspects of our numerical solvers
(Section 1) as well as all the derivatives needed for the optimization (Section 2). Equation numbers below
reference equations in the main paper (except for those prefixed by “A”).

1 Numerical Methods and Implementation

1.1 Parametrization strategy

We initialize our flatting by computing a least-squares conformal map Lévy et al. [2002] and then run 1000
iterations of the local-global fitting algorithm minimizing Efit so that the singular values σ0 and σ1 are well
separated: this is necessary to avoid singularities in our parametrization gradient and Hessian formulas.
This process takes only a few seconds on all examples shown, and the resulting singular value histogram
gives a good early indication of whether the target surface can feasibly be produced with a single inflatable
patch. We then run several rounds of the parametrization algorithm, gradually reducing the regularization
weights. A typical weight sequence starts with (wφ, wσ, wκ) = (100, 10, 500) and runs 4 additional rounds,
dividing wφ and wσ by 10 and wκ by 2 after each round. Subsequent runs after the first tend to converge
relatively quickly, allowing semi-interactive weight tuning. Since our parametrization energy definition is
not mesh dependent and we normalize the input surface dimensions before flattening, similar weights can be
used across models.

Our Newton solver’s default strategy for coping with indefinite Hessians (like those of our highly noncon-
vex parametrization energy) is the common approach of adding an increasingly large multiple of the identity
matrix until a positive definite matrix is achieved. This trial-and-error process is slow and the modification
ends up severely damping the solver’s progress. We dramatically accelerate the flattening algorithm by pro-
jecting each triangle’s contribution to the singular-value-fitting term’s Hessian to be positive semi-definite
using a 6×6 Eigendecomposition. We use a simple heuristic for enabling and disabling this projection: after
5 consecutive Newton iterations with indefinite Hessians we enable the projection for 15 iterations. We note
that while the smoothing and bending regularization terms have a different structure and cannot be handled
by this per-triangle projection, they primarily act to increase the Hessian eigenvalues, not decrease them,
meaning our simple projection approach is still effective in practice.

1.2 Smoothness of membrane energy density

We note that the relaxed membrane energy density function ψ in (1) derived from tension field theory is
only C1 continuous; it has discontinuous second derivatives, leading to discontinuities in the Hessian of the
full potential energy. However, instead of using the smoothed version recommended in Skouras et al. [2014],
we elect to work with the original non-smooth energy density and avoid relying on any third or higher
derivatives of ψ. This is because the recommended smoothing was performed on ψ’s derivatives and does
not correspond to a smoothed energy density: the smoothed derivatives are no longer integrable. It is not
obvious how to directly smooth the energy density function, and a well-defined energy density function is
crucial for formulating the equilibrium problem as an energy minimization (1) instead of a force balance to
avoid non-physical unstable equilibria.

1

1.3 Nullspace of ψ

The tension field theory relaxation of ψ(F) poses two additional challenges for simulation and optimization.
First, the Hessian contributions from triangles under compression vanish, which can lead to a singular
global Hessian, triggering a Hessian modification that will unnecessarily dampen the Newton steps and slow
convergence. We add a small artificial stiffness to these elements, given by the contribution evaluated at the
onset of compression (F = I) scaled by 10−8. Second, altering the rest shape of elements under compression
does not change the equilibrium, meaning the target-fitting objective will not discourage the design optimizer
from expanding these rest shapes arbitrarily. To remove this ambiguity and encourage designs with walls in
tension (which we hypothesize are likely more stable), we add a further regularization term (EFull − ETFT)
with a low weight (wc = 10−6) to penalize compression. This term measures the difference between the
current equilibrium’s elastic energy with (EFull) and without (ETFT) the tension field theory relaxation; it
vanishes when all elements are in tension and increases as triangles are compressed more and more.

1.4 Design optimization solver

We solve (7) with the L-BFGS-B optimization algorithm Zhu et al. [1997] using the interface provided by
scipy. This requires computing the gradient ∂J

∂Xwall
, which we derive formulas for in Section 2.4.2. We avoid

using second-order sensitivity analysis (i.e., computing ∂2J
∂Xwall

2) since this would require computing third

derivatives of the tension field theory energy density ψ, which is only C1.
We rely on several techniques to accelerate the optimization. First, we cache and reuse the symbolic fac-

torization of the simulation energy’s Hessian since the sparsity pattern is fixed throughout the optimization.
Second, we use (A4) to construct a first-order prediction of the new equilibrium of the updated design to
initialize our Newton solver; this uses the same numeric factorization computed to solve the adjoint equation,
(A5). Finally, we avoid wasting time solving for the equilibrium to evaluate J for obviously bad designs by
first evaluating the inexpensive collapse barrier and wall smoothness terms; if these terms alone exceed the
full objective of the previous design, we bail early, returning a large energy value (2× the previous iterate).

1.5 Nondimensionalization

The individual terms of our objective in (7) have different units, as do the terms of the simulation energy
after εT (Φ) is added. This is problematic, since it means weights chosen for one model are likely suboptimal
for another with a different scale. However, by dividing by characteristic measurements of the design, we
can make each energy term unitless and scale-invariant, greatly reducing the parameter tuning effort. In
the following, we define Â and ŵ to be the initial fused region area and median wall width, respectively.
We divide the potential energy terms in (1) by Y h|Ŝ0|, (the Young’s modulus times the initial volume of
the sheet material) and divide T by the Âŵ2; now T measures the mean-squared deviation relative to the
wall width. To nondimensionalize the design objective, we additionally divide the barrier term by |Ŝ0| and
multiply the smoothing term by ŵ (which also makes the smoothing term approximately invariant to the
stripe pattern frequency). The full resulting design optimization energy is presented in (A3) below. Finally,
we employ a simple change of variables, expressing our optimization and simulation variables in units of ŵ
so that all gradients are scale-invariant too (which is helpful for L-BFGS-B’s initial step size selection).

1.6 Weights

Following the nondimensionalization process, we could use the same settings across nearly all models (wsm =
1.0 for the boundary curve and 0.1 for the internal curves; wb = 1.0). We only made small changes on a few
models (setting the smoothing weight for internal curves to 0.05 and 0.01 on the Lilium and Annulus models,
respectively, to encourage a tighter fit after a first attempt with the default settings). For most models, we
can actually run a single round of optimization with ε = 0 (or ε = 10−6 to constrain rigid motions for models
with free boundaries), but some like the Annulus have nearly-unstable equilibria at early optimization steps
that prevent the optimizer from making substantial progress. For these, we run an initial optimization round

2

with a target-attracting weight of ε = 10−3 to stabilize the deformation, before dropping ε to the default
value.

1.7 Remeshing

For two models we tried (Lilium tower and Annulus), the design optimization pulled a fusing curve sufficiently
far from the boundary to badly stretch some of the tube triangles. To ensure an accurate simulation and
continue optimizing past this point, we implemented a remeshing process that retriangulates the tube regions
of S0 with high-quality triangles using Triangle Shewchuk [1996] and transfers all optimization states over
to the new mesh by sampling. Note that this requires an identical retriangulation of Ŝ0, which we obtain by
interpolating the original X̂wall on this new mesh. We also transfer the equilibrium deformation from the
old mesh so that the corresponding equilibrium of the remeshed sheet can be computed rapidly.

2 Derivatives

2.1 Derivatives of the SVD

Both the flattening and physical simulation stages of our pipeline require gradient and Hessian formulas for
the SVD of a map’s Jacobian. For the parametrization problem, the map is from R3 to R2, while for the
simulation problem it is from R2 to R3, so the SVD we must differentiate is of either a 2× 3 or 3× 2 matrix.
We consider here the 2× 3 case, and the derivatives for the 3× 2 case can be found simply by transposing
the formulas.

We denote our mapping Jacobian as F (which corresponds to either ∇f or ∇Φ) and write its SVD as:

F = U

[
σ0 0 0
0 σ1 0

]
︸ ︷︷ ︸

Σ

V T U ∈ O(2), V ∈ O(3),

where U and V contain the left and right singular vectors as columns:

U =
[
u0 v0

]
, V =

[
v0 v1 v2

]
.

We observe that v2 is the surface normal, while v1 and v2 form an orthonormal basis for the tangent plane.

2.1.1 Gradients

We compute first derivatives of the SVD by differentiating both sides of this relationship, considering how
the quantities change when F is perturbed with a “velocity” Ḟ :

Ḟ = U̇ΣV T + U Σ̇V T + UΣV̇ T =⇒ UT Ḟ V = UT U̇Σ + Σ̇ + ΣV̇ TV (A1)

Differentiating the relationships UTU = Id2×2 and V TV = Id3×3 reveals that UT U̇ and V̇ TV are skew
symmetric and thus can be written as the infinitesimal rotations:

UT U̇ :=

[
0 −α
α 0

]
, V̇ TV = −V T V̇ := −

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ,
where α and ω denote angular velocities of the singular vector frame around the current frame axes. Plugging
these expressions into (A1) and simplifying, we find:

UT Ḟ V =

[
σ̇0 σ0ωz − σ1α −σ0ωy

σ0α− σ1ωz σ̇1 σ1ωx

]
,

3

which immediately gives us an expression for σ̇0, σ̇1, ωx, and ωy and is straightforward to solve for α and
ωz. We conclude the following derivative formulas:

(
∂

∂F

[
σ0

σ1

])
: Ḟ =

[
uT0 Ḟv0

uT1 Ḟv1

]
=

[
u0v

T
0 : Ḟ

u1v
T
1 : Ḟ

]
=⇒

∂σ0

∂F = u0v
T
0

∂σ1

∂F = u1v
T
1

ωx = − 1

σ0
uT0 Ḟv2

ωy =
1

σ1
uT1 Ḟv2

ωz =
1

σ2
0 − σ2

1

(
σ1u

T
1 Ḟv0 + σ0u

T
0 Ḟv1

)


=⇒

∂v0

∂F
= v1 ⊗Wz − v2 ⊗Wy

∂v1

∂F
= −v0 ⊗Wz + v2 ⊗Wx

∂v2

∂F
= v0 ⊗Wy − v1 ⊗Wx

α =
1

σ2
0 − σ2

1

(
σ0u

T
1 Ḟv0 + σ1u

T
0 Ḟv1

)
=⇒

∂u0

∂F
= u1 ⊗A

∂u1

∂F
= −u0 ⊗A,

where we introduced the following matrices whose double contraction with Ḟ computes the corresponding
angular velocities:

Wx := −u0v
T
2

σ0

Wy :=
u1v

T
2

σ1

Wz :=
σ1u1v

T
0 + σ0u0v

T
1

σ2
0 − σ2

1

A :=
σ0u1v

T
0 + σ1u0v

T
1

σ2
0 − σ2

1

=⇒

ωx = Wx : Ḟ

ωy = Wy : Ḟ

ωz = Wz : Ḟ

α = A : Ḟ .

We note that if the triangle’s normal in 3D does not rotate (as is the case for the parametrization problem),
both ωx and ωy will vanish, and all expressions involving v2 can be neglected.

2.1.2 Hessians

We compute Hessians with respect to F by differentiating our first derivative expressions. To avoid working
with higher order tensors, we evaluate directional derivatives along an arbitrary Ḟ . In fact, our implementa-
tion uses only these directional derivative expressions and not the full tensors, e.g. feeding in a FEM shape
function’s Jacobian as Ḟ when constructing the energy Hessian matrix. The singular value Hessians are:

∂2σ0

∂F 2
: Ḟ = u̇0v

T
0 + u0v̇

T
0 = αu1v

T
0 + ωzu0v

T
1 − ωyu0v

T
2 ,

∂2σ1

∂F 2
: Ḟ = u̇1v

T
1 + u1v̇

T
1 = −αu0v

T
1 − ωzu1v

T
0 + ωxu1v

T
2 .

These singular value expressions are enough to compute Hessians of the elastic sheet’s energy density. For
the parametrization energy, the Hessians of singular vectors u0 and v1 are additionally needed:

∂2u0

∂F 2
: Ḟ = −αu0 ⊗A+ u1 ⊗ Ȧ

∂2v1

∂F 2
: Ḟ = −v1 ⊗ (ωzWz + ωxWx) + v0 ⊗ (ωyWx − Ẇz) + v2 ⊗ (ωyWz + Ẇx).

4

These expressions need the directional derivatives Ȧ, Ẇz, and Ẇx:

Ȧ = 2
σ1σ̇1 − σ0σ̇0

σ2
0 − σ2

1

A +
σ̇0u1v

T
0 + σ̇1u0v

T
1 − (σ0α+ σ1ωz)u0v

T
0 + (σ1α+ σ0ωz)u1v

T
1 + (σ1ωxu0 − σ0ωyu1) vT2

σ2
0 − σ2

1

Ẇz = 2
σ1σ̇1 − σ0σ̇0

σ2
0 − σ2

1

Wz +
σ̇1u1v

T
0 + σ̇0u0v

T
1 − (σ1α+ σ0ωz)u0v

T
0 + (σ0α+ σ1ωz)u1v

T
1 + (σ0ωxu0 − σ1ωyu1) vT2

σ2
0 − σ2

1

Ẇx =
σ̇0u0v

T
2

σ2
0

− αu1v
T
2 + u0(ωyv0 − ωxv1)T

σ0
.

We again remark that, for the parametrization problem where the 3D triangle’s normal does not rotate, the
terms involving ωx, ωy, and v2 can be dropped. For other applications that might need them, the Hessian of
u1 follows immediately by realizing u1 is a 90◦ rotation of u0, and Hessians for v0 and v2 can be computed
similarly to v1.

2.2 Derivatives of the Parametrization Energy

In this section, we compute derivatives of our target surface flattening energy in the discrete setting, using
xi to denote the parametric position of vertex i of the target surface so that the piecewise linear flattening
map f is given by:

f =
∑
i

λixi =⇒ ∇f =
∑
i

xi ⊗∇λi,

where λi are the linear finite element shape functions. The flattening’s Jacobian ∇f takes the constant value
∇ft within each triangle t. Our discrete parametrization energy consists of energy terms contributed by each
triangle t and each pair of triangles (i, j) connected by edges in the dual intrinsic Delaunay triangulation:

Eflat(x0, · · · ,xn−1) =
∑
t

Et(∇ft)At +
∑
ij

Eedge(∇fi,∇fj)lij .

The triangle contributions include the singular value fitting and the bending regularization terms:

Et(F) := s
(
σ0(F), σ1(F)

)
+
wκ
4
‖v1(F)‖2St ,

and the edge contributions include the direction and stretch smoothness regularizations:

Eedge(F ,G) :=
wφ
2
‖u0(F)× u0(G)‖2 +

wσ
2

(σ0(F)− σ0(G))
2
.

We introduced the following singular value fitting function to simplify notation:

s(σ0, σ1) :=
1

|M|

(
(σ1 − 1)2 + (σ0 − clamp(σ0, [σmin, π/2]))

2

)
.

2.2.1 Gradients

We now compute the derivative of Eflat with respect to component c ∈ {0, 1} of a mesh vertex’s parametric
position xk. First, we note that

∂∇ft
∂xk,c

= ec ⊗∇λk,t,

where ec is the cth standard basis vector for R3. This term is nonzero only for triangles t in vertex k’s ring
of adjacent triangles. We now differentiate:

∂Eflat

∂xk,c
=
∑
t

At

(
∂Et
∂F

: (ec ⊗∇λk,t)
)

+
∑
ij

lij

(
∂Eedge

∂F
: (ec ⊗∇λk,i) +

∂Eedge

∂G
: (ec ⊗∇λk,j)

)
.

5

The individual contribution gradients needed in this expression are:

∂Et
∂F

(F) =
∂s

∂σ0

∂σ0

∂F
(F) +

∂s

∂σ1

∂σ1

∂F
(F) + wκ(vT1 Stv1)

(
vT1 St

∂v1

∂F
(F)

)
,

∂Eedge

∂F
(F ,G) = wφ

(
u0(F)× u0(G)

)
·
(
∂u0

∂F
(F)× u0(G)

)
+ wσ(σ0(F)− σ0(G))

∂σ0

∂F
(F),

∂Eedge

∂G
(F ,G) = wφ

(
u0(F)× u0(G)

)
·
(

u0(F)× ∂u0

∂F
(G)

)
− wσ(σ0(F)− σ0(G))

∂σ0

∂F
(G).

The function s is straightforward to differentiate, and expressions for the SVD quantities’ derivatives are
given in Section 2.1.

2.2.2 Hessians

We compute the Hessian with respect to flattened position component c of mesh vertex k and component d
of mesh vertex l:

∂2Eflat

∂xk,c∂xl,d
=
∑
t

At(ec ⊗∇λk,t) :
∂2Et
∂F2

: (ed ⊗∇λl,t)

+
∑
ij

lij

[
(ec ⊗∇λk,i) :

∂2Eedge

∂F2
: (ed ⊗∇λl,i) + (ec ⊗∇λk,i) :

∂2Eedge

∂F∂G
: (ed ⊗∇λl,j)+

(ec ⊗∇λk,j) :
∂2Eedge

∂G∂F
: (ed ⊗∇λl,i) + (ec ⊗∇λk,j) :

∂2Eedge

∂G2
: (ed ⊗∇λl,j)

]
.

The per-triangle contribution Hessian expression is:

δFa :
∂2Et
∂F2

: δFb =

1∑
i=0

(
∂σi
∂F

: δFa

)
∂2s

∂σ2
i

(
∂σi
∂F

: δFb

)
+

∂s

∂σi

(
δFb :

∂2σi
∂F 2

: δFb

)
+ 2wκ

(
vT1 St

(
∂v1

∂F
: δFa

))(
vT1 St

(
∂v1

∂F
: δFb

))
+ wκ(vT1 Stv1)

((
∂v1

∂F
: δFa

)T
St

(
∂v1

∂F
: δFb

)
+ vT1 St

(
δFa :

∂2v1

∂F 2
: δFb

))
,

where we used the fact that ∂2s
∂σ0∂σ1

= 0. The per-edge contribution Hessian blocks are:

δFa :
∂2Eedge

∂F2
: δFb = wφ

[((
∂u0

∂F
(F) : δFa

)
× u0(G)

)
·
((

∂u0

∂F
(F) : δFb

)
× u0(G)

)
+

(
u0(F)× u0(G)

)
·
((

δFa :
∂2u0

∂F 2
(F) : δFb

)
× u0(G)

)]
+ wσ

[(
∂σ0

∂F
(F) : δFa

)(
∂σ0

∂F
(F) : δFb

)
+ (σ0(F)− σ0(G))

(
δFa :

∂2σ0

∂F 2
(F) : δFb

)]
,

δFa :
∂2Eedge

∂F∂G
: δFb = wφ

[((
∂u0

∂F
(F) : δFa

)
× u0(G)

)
·
(

u0(F)×
(
∂u0

∂F
(G) : δFb

))
+

(
u0(F)× u0(G)

)
·
((

∂u0

∂F
(F) : δFa

)
×
(
∂u0

∂F
(G) : δFb

))]
− wσ

[(
∂σ0

∂F
(F) : δFa

)(
∂σ0

∂F
(G) : δFb

)]
.

6

The blocks
∂2Eedge

∂G∂F and
∂2Eedge

∂G2 can be found by exchanging the F and G symbols in the above formulas.
We build the sparse Hessian matrix by looping over the triangles and accumulating the contributions

to each influenced variables’ Hessian entries; for the edge-based regularization terms, this involves an inner
loop over the neighboring triangles in the dual IDT.

2.3 Derivatives of the Simulation Energy

The nondimensionalized potential energy minimized in our simulation consists of a physical energy term and
a small fictitious target-attraction term:

Esim[Φ;S0] :=
1

Y h|Ŝ0|

∫
S0
ψ(∇Φ) dA− p Vol(Stube)︸ ︷︷ ︸

Ephys[Φ;S0]

+
ε

Âŵ2
T (Φ).

We discretize this energy for a sheet with undeformed vertex positions Xi ∈ R2 and deformed positions
xi ∈ R3 using linear finite elements. Recall that our inflatable is formed by gluing two identical copies of
the triangle sheet mesh together. We assign a single undeformed position Xi to each vertex in this original
mesh, which controls both the top and bottom mesh copies. Likewise, each wall vertex in Xwall has a single
corresponding deformed position since the top and bottom sheet meshes are fused together at these vertices.
However, the vertices inside the tube regions are assigned two distinct deformed positions: one for each copy.

The deformation Φ and its Jacobian are given by:

Φ =
∑
i

xiλi =⇒ ∇Φ =
∑
i

xi ⊗∇λi,

where now λi represents the sum of all piecewise linear shape functions of vertices sharing deformation
variable xi. Plugging this deformation gradient into the continuous simulation energy and substituting our
explicit formula for tube volume, we obtain a discrete energy:

Esim(x,X) :=
1

Y h|Ŝ0|
Ephys(x,X) + T (x),

Ephys(x,X) :=

∫
S0(X)

ψ

(∑
i

xi∇λi

)
dA− p

6

∑
Tijk∈Stube

det
([

xi xj xk
])
,

T (x) :=
ε

Âŵ2

∑
xi

Axi

2
‖xi − PM(xi)‖2 1wall

i .

This notation collects all positions Xi and xi into the vectors of undeformed and deformed degrees of freedom
X and x, and we use the wall indicator vector 1wall

i , which is 1 if vertex i is a wall vertex and 0 otherwise.
To simulate the inflation of a sheet with specified undeformed positions X using a Newton-based solver, we
need gradients and Hessians of Ephys and T with respect to the deformed positions x.

2.3.1 Gradients

We differentiate the terms of the simulation energy with respect to component c ∈ {1, 2, 3} of deformed
position xi, using ec to denote the cth standard basis vector for R3:

∂Ephys

∂xi,c
(x,X) =

∫
S0(X)

(ec ⊗∇λi) :
∂ψ

∂F
(∇Φ) dA−

p
6

∑
Tijk∈Stube

xj × xk


c

,

∂T

∂xi,c
(x) = Axi [xi − PM(xi)]c 1wall

i ,

(A2)

7

where we have employed the convention that the specified index i constrains the sum over tube triangles to

be a sum over triangles containing vertex xi. We note that the expression ∂PM(xi)
∂xi,c

does not arise since it is

orthogonal to xi − PM(xi).
The derivative of the tension field theory elastic energy density, ∂ψ

∂F , is straightforward to compute from
its piecewise definition in the main paper and the SVD derivative formulas of Section 2.1.

While it is not immediately obvious from this gradient expression, the gradient of the pressure term with
respect to xi actually equals the ith vertex’s inward-pointing normal scaled by the pressure and the vertex
area (one-third the incident triangle area), using the area-weighted average of incident triangle normals as
the vertex normal definition. This lends a natural interpretation of the pressure term: it induces an outward-
pointing normal force of the appropriate magnitude. This equivalence can be seen by rigidly translating the
mesh so that vertex xi is at the origin.

2.3.2 Hessians

We now differentiate a second time with respect to component d ∈ {1, 2, 3} of deformed position xj :

∂2Ephys

∂xi,c∂xj,d
(x,X) =

∫
S0(X)

(ec ⊗∇λi) :
∂2ψ

∂F 2
: (ed ⊗∇λj) dA+

p
6

∑
Tijk∈Stube

[xk]×


c,d

,

∂2T

∂xi,c∂xj,d
(x) = Axiδij

[
ed −

∂PM(xi)

∂xi,d

]
c

1wall
i .

We again used the convention that the specified indices i, j constrain the sum over tube triangles to be a sum
over triangles containing vertex xi and xj . The symbol δij is the Kronecker delta, and [xk]× is the matrix

such that [xk]×v = xk × v for all v. ∂2ψ
∂F 2 , is also straightforward to compute from its piecewise definition in

the main paper and the SVD derivative formulas of Section 2.1.

2.4 Derivatives of the Design Optimization

Our sheet design optimization minimizes the discretized objective function, J(Xwall) = J̃(X(Xwall)):

J̃(X) :=
1

Âŵ2
T (x∗(X)) +

wb

|Ŝ0|

∫
Ŝ0
b(∇ϕ) dA+ wsmRsm(X) + wcRc(x,X) (A3)

where Rsm and Rc are the nondimensionalized discrete smoothness and compression penalty terms (see

Section 1.3), ϕ : Ŝ0 → S0(X) is the piecewise linear mapping of the initial sheet mesh Ŝ0 (with vertices X̂i)
induced by the design alteration prescribed by Xwall, and

x∗(X) := argmin
x

Esim(x,X)

are the deformed vertex positions of the inflated equilibrium.
We discretize the smoothness term as a sum over non-endpoint vertices of curves in γ, which we collect

in index set Vγ . We introduce the current and initial Voronoi lengths li and l̂i associated with vertex i ∈ Vγ
and define ei and ei−1 (and their hatted counterparts in the initial mesh) to be the edge vectors of the two
incident edges. Then our discrete smoothness term is:

Rsm(X) :=
ŵ

2

∑
i∈Vγ

(
1

li
∠(ei−1, ei)− 1

l̂i
∠(êi−1, êi)

)2

+

l̂i +

(
‖ei−1‖
‖êi−1‖

− ‖e
i‖

‖êi‖

)2
1

l̂i
,

where ∠(a,b) measures the unsigned angle between two vectors.

8

The compression penalty term measures the difference between the equilibrium elastic energies evaluated
with and without tension field theory relaxation:

Rc(x,X) :=
1

Y h|Ŝ0|
(EFull(x,X)− ETFT(x,X)) .

We will for now differentiate J̃ , treating every undeformed position Xi as an independent variable of the
design optimization. Later in Section 2.4.2, we will show how to compute derivatives when Xi are set by
harmonically interpolating the wall positions. Thus, ϕ can be written explicitly as:

ϕ =
∑
i

Xiλ̂i, ∇ϕ =
∑
i

Xi ⊗∇λ̂i,

where λ̂ are the piecewise linear FEM shape functions for Ŝ0.

2.4.1 Derivatives With Respect to All Mesh Vertices

Differentiating with respect to the undeformed vertex position Xi:

∂J̃

∂Xi
=

(
1

Âŵ2

∂T

∂x
+ wc

∂Rc

∂x

)
∂x∗

∂Xi
+

∫
Ŝ0
b′(∇ϕ)∇λ̂i dA+ wc

∂Rc

∂X
+ wsm

∂Rsm

∂X

The derivative of the barrier function b′ is straightforward to compute using the singular value derivative
formulas from Section 2.1 (either by conceptually padding the 2 × 2 matrix ∇ϕ to 2 × 3 or by truncating
the derivative formulas). The derivatives ∂Rc

∂x and ∂T
∂x can be adapted from (A2) (ignoring the pressure

term and enabling/disabling the tension field theory relaxation). Likewise, ∂Rc

∂X can be obtained with a

simpler version of the calculation (A7) below. The derivative ∂Rsm

∂X can be calculated with expressions for
the derivative of a vector’s length and angle, which can be obtained with simple geometric arguments. For

example ∂∠(a,b)
∂a = a⊥

‖a‖2 , where ⊥ rotates a away from b by π
2 . The only challenging part is ∂x∗

∂Xi
.

Away from the discontinuities discussed in the Navigating local minima paragraph of the main paper,
we can determine how the equilibrium deformation positions evolve as undeformed positions X change by
differentiating both sides of the equation characterizing the equilibrium:

∂Esim

∂x

(
x∗(X),X

)
= 0 =⇒ ∂2Esim

∂x2

∂x∗

∂X
+
∂2Esim

∂x∂X
= 0

=⇒ ∂x∗

∂X
= −

[
∂2Esim

∂x2

]−1
∂2Esim

∂x∂X
. (A4)

Since the mesh consists of thousands of vertices (over 250K for the inflatable face mask example), we must
employ the adjoint method to make the gradient calculation tractable: we solve for the adjoint state,

p :=

[
∂2Esim

∂x2

]−1(
1

Âŵ2

∂T

∂x
+ wc

∂Rc

∂x

)
, (A5)

and then compute the full gradient as:

∂J̃

∂Xi
= −pT

∂2Esim

∂x∂Xi
+

∫
Ŝ0
b′(∇ϕ)∇λ̂i dA+ +wc

∂Rc

∂X
+ wsm

∂Rsm

∂X
. (A6)

Finally, we compute the term ∂2Esim

∂x∂X by changing variables to express the simulation energy gradient
∂Esim

∂x as an integral over the fixed initial sheet Ŝ0 that can be directly differentiated: this change of variables

9

involves transferring quantities from Xi of S0 to the corresponding vertex X̂i of Ŝ0. Only the elastic energy
term of Esim depends on X, so we have only one integral to differentiate:

∂2Esim

∂xi,c∂Xj,d
=

∂

∂Xj,d

∫
Ŝ0

(
(ec ⊗∇λ̂i)∇ϕ−1

)
:
∂ψ

∂F

(
∇̂Φ∇ϕ−1

)
det(∇ϕ) dA, (A7)

where ∇̂Φ is shorthand for
∑
k xk⊗∇λ̂k, and we used the gradient transformation formula∇λk = ∇ϕ−T∇λ̂k.

Now that the integration domain is fixed, we can differentiate the integral using the following formulas:

∂∇ϕ
∂Xj,d

= ed ⊗∇λ̂j =⇒ ∂∇ϕ−1

∂Xj,d
= −∇ϕ−1

(
ed ⊗∇λ̂j

)
∇ϕ−1,

∂ det (∇ϕ)

∂Xj,d
= det (∇ϕ)

[
∇ϕ−T :

(
ed ⊗∇λ̂j

)]
= det (∇ϕ)

(
ed · ∇ϕ−T∇λ̂j

)
.

∂2Esim

∂xi,c∂Xj,d
=−

∫
Ŝ0

(
(ec ⊗∇λ̂i)∇ϕ−1(ed ⊗∇λ̂j)∇ϕ−1

)
:
∂ψ

∂F

(
∇̂Φ∇ϕ−1

)
det(∇ϕ) dA

−
∫
Ŝ0

(
(ec ⊗∇λ̂i)∇ϕ−1

)
:
∂2ψ

∂F 2

(
∇̂Φ∇ϕ−1

)
:
(
∇̂Φ∇ϕ−1(ed ⊗∇λ̂j)∇ϕ−1

)
det(∇ϕ) dA

+

∫
Ŝ0

(
(ec ⊗∇λ̂i)∇ϕ−1

)
:
∂ψ

∂F

(
∇̂Φ∇ϕ−1

)
det (∇ϕ)

(
ed · ∇ϕ−T∇λ̂j

)
dA.

Changing variables back to an integral over the current sheet, we obtain our final expression:

∂2Esim

∂xi,c∂Xj,d
=−

∫
S0

(
(ec ⊗∇λi)(ed ⊗∇λj)

)
:
∂ψ

∂F
− (ec ⊗∇λi) :

∂2ψ

∂F 2
:
(

(∇Φ)(ed ⊗∇λj)
)

+ (ec ⊗∇λi) :
∂ψ

∂F
ed · ∇λj dA.

(A8)

where we suppressed the energy density’s argument (∇Φ) for brevity. We also can obtain a simplified
expression for the term of J̃ ’s gradient in which this expression appears:

−pT
∂2Esim

∂x∂Xj,d
=

∫
S0

(
∇p(ed ⊗∇λj)

)
:
∂ψ

∂F
+∇p :

∂2ψ

∂F 2
:
(

(∇Φ)(ed ⊗∇λj)
)
−∇p :

∂ψ

∂F
ed · ∇λj dA.

(An abuse of notation was made to simplify the right-hand side of this equation, using the shorthand ∇p for∑
k pk ⊗∇λk, i.e., not distinguishing between the FEM coefficient vector p and its corresponding piecewise

linear vector field.)

We note that computing higher-order sensitivity information ∂2J̃
∂X2 would require taking a third derivative

of ψ, which is in fact only C1 (with non-smooth transitions between compression and tension). We opt
instead to use a BFGS Hessian approximation.

2.4.2 Derivatives With Respect to the Wall Vertices

The gradient formula (A6) is for differentiating the design objective with respect to every mesh vertex.
However, our design optimization only optimizes Xwall, the undeformed positions of the wall vertices, and
positions the rest of X using a harmonic interpolation:

X(Xwall) =

[
Xinterior

Xwall

]
= −

[
L̂−1
ii L̂iw
I

]
Xwall.

We obtain the necessary gradient formula with the chain rule:

∂J

∂Xwall
=
∂J̃(X(Xwall))

∂Xwall
=
∂J̃

∂X

∂X(Xwall)

∂Xwall
= − ∂J̃

∂X

[
L̂−1
ii L̂iw
I

]
, (A9)

which we can evaluate with a single backsolve of the sparse, constant matrix L̂ii and a sparse matrix-vector
product.

10

References

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares Conformal Maps
for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3 (July 2002), 362–371. https:

//doi.org/10.1145/566654.566590

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In Applied Computational Geometry: Towards Geometric Engineering, Ming C. Lin and
Dinesh Manocha (Eds.). Lecture Notes in Computer Science, Vol. 1148. Springer-Verlag, 203–222.

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and
Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014),
10 pages. https://doi.org/10.1145/2601097.2601166

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran
Subroutines for Large-Scale Bound-Constrained Optimization. ACM Trans. Math. Softw. 23, 4 (Dec.
1997), 550–560. https://doi.org/10.1145/279232.279236

11

https://doi.org/10.1145/566654.566590
https://doi.org/10.1145/566654.566590
https://doi.org/10.1145/2601097.2601166
https://doi.org/10.1145/279232.279236

	Numerical Methods and Implementation
	Parametrization strategy
	Smoothness of membrane energy density
	Nullspace of
	Design optimization solver
	Nondimensionalization
	Weights
	Remeshing

	Derivatives
	Derivatives of the SVD
	Gradients
	Hessians

	Derivatives of the Parametrization Energy
	Gradients
	Hessians

	Derivatives of the Simulation Energy
	Gradients
	Hessians

	Derivatives of the Design Optimization
	Derivatives With Respect to All Mesh Vertices
	Derivatives With Respect to the Wall Vertices

