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This document provides additional technical details regarding our strategy for enforcing the average
opening angle constraint during simulation, our energy nondimensionalization and stress calculation, our
arc-length reparameterization of cubic splines, the terms used our planarization algorithm, the fairness
regularization term used in the design optimization objective, and our process for calculating gradients for
the design optimization.

1 Average Angle Constraint Enforcement

As discussed in Section 4.1 of the main paper, the approach that Panetta et al. (2019) use for imposing
the equality constraint on the average opening angles during the deployment simulation is problematic in
situations where the deployment path constitutes a direction of negative curvature; in these cases, the elastic
energy Hessian H they attempt to factorize at each Newton step is indefinite even at minimizers of the
constrained optimization problem. As a result, the solver applies unnecessary modifications to the Hessian
(severely damping steps and slowing progress) and refuses to converge, falsely believing the minimum to be
a saddle point.

We address this issue by applying a sparse linear change of variables to make the average angle (i.e., the
deployment path parameter) an explicit variable of the optimization.

1.1 Change of Simulation Variables

A näıve choice for this change of variables can easily make the transformed Hessian dense. For instance,
solving for the last joint opening angle variable in terms of the average angle and the other n − 1 opening
angles corresponds to the change of variables:
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ᾱx


,

the last dense row of which would contribute a dense n × n block to the transformed Hessian. However,
other choices are possible: the important property is that the left n− 1 columns must average to zero (i.e.,
be orthogonal to the constraint and not influence the average deployment angle), while the last column must
average to one.

We propose a different symmetric formula that achieves this goal while minimizing the number of nonzero
entries in any row, thereby minimizing the fill-in of the transformed Hessian:
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Figure 1 Some patterns can be repeated and stitched in the flat layout during the design conception phase to
generate interesting deployed states.

The new joint angle variables α0 now correspond to simultaneously opening and closing a pair of joints at
unit speed (preserving the average angle).

Here Aα is the joint-angle sub-block of the full sparse matrix A that implements the change of variables
x = Ax̄ (expressing the original simulation variables x in terms of the new variables x̄). The rest of the
rows/columns of A are taken from the np × np identity matrix so that only the joint angles are affected by
the change of variables.

Our sparse change of variables can be adapted for the case that only a subset I of the joints are actuated.
We then construct a smaller |I| × |I| matrix Aα using the same approach above but restricted to the angle
variables of actuated joints. The remaining rows/columns of A are once more taken from the identity matrix.

We use these new simulation variables x̄ throughout our pipeline, but refer to them as x in the main
paper to avoid cluttered notation.

1.2 Impact on the Gradients and Hessians

The gradient of the total elastic energy ∂
∂x̄E(Ax̄,p) can be obtained via the chain rule as ∂E

∂xA. Similarly,

the Hessian of the total elastic energy ∂2

∂x̄2E(Ax̄,p) is given by

∂

∂x̄

(
∂E

∂x
A

)
= AT ∂

2E

∂x2 A.

To study the impact of this change of variables on the Hessian sparsity pattern, we note that:

AT ∂
2E

∂x2 A =
∑
k,l

hk,la
⊤
k al,

where hk,l is an element of the original Hessian ∂2E
∂x2 , and row vector ak denotes the kth row of A, making

the expression a⊤k al an outer product. Since these rows all contain a 1 in the location associated with

average angle variable ᾱx, the sum of outer products will fill in the row and column of ∂2E
∂x̄2 associated with

ᾱx. However, this variable is pinned during deployment, removing the highly dense row and column of the
transformed Hessian. After this removal, our change of variables leaves every row/column of the transformed
Hessian highly sparse. In total, it introduces O(njoints) new nonzero entries, far fewer than the O(n2joints)
entries introduced by the näıve approach.

1.3 Impact on the Deployment

In Panetta et al. (2019), the deployed equilibrium state for a given opening angle ᾱtgt was found by solving
a constrained optimization problem:
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x∗
3D(p, ᾱ

tgt) := argmin
x

E(x,p)

s.t. aTx = ᾱtgt,

where the inner product with vector a extracts and averages the X-shell’s opening angle variables. The
associated KKT system, ∂2E∂x2 a

aT 0

[
δx

δλ̃

]
=

−
(
∂E

∂x

)T

δᾱ

 ,
determines the infinitesimal change δx in state variable x∗

3D(p̄) induced by incrementing the average opening

angle by δᾱ, where δλ̃ is the Lagrange multiplier associated to the minimization problem. The Hessian of the
energy evaluated at the current intermediate deployed state x∗

3D(p̄) may not be positive definite. Formerly,
the Hessian would be modified in this case to be positive definite.

After our change of variables, the KKT system becomes
∂2E

∂x̄\ᾱ
2 δx̄\ᾱ = −

(
∂E

∂x̄\ᾱ

)T

δᾱx = δᾱ,

where we dropped the row and column of the left hand side of the KKT system that are associated to the

pinned average angle variable. The transformed Hessian of the total elastic energy ∂2E
∂x̄\ᾱ

2 is now ensured to

be positive definite at the intermediate deployed equilibrium state x̄∗
3D(p̄). This allows factorizing the left

hand side using an efficient sparse Cholesky factorization.
The total torque applied at the actuated joints to hold the deployed configuration can now be obtained

by looking at the component of the gradient associated to the average opening angle

njoints−1∑
i=0

∂E

∂αi
=

njoints−1∑
i=0

∂E

∂ᾱx

∂ᾱx

∂αi
=

∂E

∂ᾱx
,

where all the gradients are evaluated at x̄∗
3D, the deployed state.

2 Non-dimensionalization of the Energy During Deployment

Using the new parameterization, the deployed state is given by

x̄∗
3D(p, ᾱ

tgt) := argmin
x̄

1

Y V0
E(x̄,p) + T (x̄)

s.t. ᾱ(x̄) = ᾱtgt,

where E is now the total elastic energy of the system using the new parameterization, T is the non-
dimensionalized target attraction term, ᾱ(x̄) extracts the average angle variable from x̄, and ᾱtgt is the
target average opening angle in the deployed state. The target attraction term is used here only to factor
out rigid motion and is scaled by a small weight. To ease parameter tuning, we nondimensionalize the energy
term by dividing it by both the Young’s modulus Y of the fabrication material and the rest volume V0 of the
C-shell. This normalization factor is motivated by the fact that the bending, twisting, and stretching energies
stored in the rods of a C-shell can be derived by plugging strain tensor fields ϵ induced these deformation
modes into the linear elasticity energy 1

2

∫
Ω
ϵ : C : ϵ, where C is the fabrication material’s elasticity tensor.

For an isotropic material, C = YC0(ν), where C0(ν) depends only on the Poisson’s ratio ν; for example
C0(0) is the fourth-order identity tensor. Since strain ϵ is nondimensional, this elastic energy clearly is
proportional to Y V0.
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3 Stress Computation

We use a similar approach to Megaro et al. (2017) to compute stresses for Discrete Elastic Rods (DERs).
Introducing a 2D coordinate system (x, y) for the material cross-section with the centerline at its origin, we
seek to approximate the stress tensor σ(x, y). Following the kinematic assumptions of Kirchhoff rods, the
state of stress in a deformed rod with torsion τ , material curvature vector κ, and uniaxial stretching ∆l

l is:

σ(x, y) = τµ


0 0

∂ψ

∂x
− y

0 0
∂ψ

∂y
+ x

∂ψ

∂x
− y

∂ψ

∂y
+ x

σzz
τµ

 , σzz := Y

(
∆l

l
+ κ ·

[
x
y

])
,

where the scalar field ψ(x, y) describes how the initially planar cross-section warps out of plane under torsion
to relax into equilibrium; it is determined by solving a Laplace equation Landau et al. (1986); Megaro et al.
(2017); Panetta et al. (2019).

We use von Mises stress σv =
√

3
2∥σd∥F to evaluate our structures’ robustness, where σd := σ − 1

3 tr(σ)I

is the deviatoric stress. This von Mises stress simplifies to:

σ2
v = 3(µτ)2

∥∥∥∥∇ψ +

[
−y
x

]∥∥∥∥2 + σ2
zz,

and it can be shown that each of these two terms is subharmonic. This means σ2
v itself is subharmonic and

therefore σv satisfies a maximum principle: the maximum von Mises stress occurs on the boundary. In other
words, to evaluate failure likelihood, we can restrict our consideration to the cross-section boundary.

One notable departure of our formulation from Megaro et al. (2017) is in its discretization for DERs. We
recall that the material curvature κ is defined by decomposing the curvature normal into its components with
respect to the orthonormal material frame. Unfortunately, for DERs, discrete curvature is defined at the
vertices, while the material frames are attached to edges. Megaro et al. (2017) resolve this misalignment by
simply averaging the material frame vectors onto the vertices using an arithmetic mean, which is nonphysical.
Instead, when evaluating stress at a sample point within the cross-section at a rod vertex, we compute two
separate stress values: one according to each incident edge’s material frame. Then we average these two
values using the incident edge lengths as weights to obtain a single stress sample. We sample stress at every
boundary node of the same finite element mesh of the cross section that we use to solve for ψ, guaranteeing
that the maximum is sampled.
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4 Curve Parameterization

The rest shapes of the beams composing C-shells are parameterized using interpolating cubic splines. For
joints and intermediate control points along a curve, we fit a natural cubic spline to join them. The inter-
polation property is important for preserving the topology of the linkage (so that curve intersections occur
precisely at the joints where they are intended).

4.1 Curve Discretization

edge vertex

shared edge

rod segment

joint

rod edge

Figure 2 Terminology of the different elements involved in our C-
shell discretization. Consecutive rod segments originate from the
same cubic spline, ensuring C2 smoothness at the joints.

Our curves are split into segments at the
joints, and each segment is discretized
into edges. The joint model we use re-
quires the segments to overlap at the
joints, and share an edge. That model
distributes the total rest length of a seg-
ment evenly across the edges with the
exception of the boundary edges. Such
shared edges have a length equal to the
minimum length of edges from either one
of the two consecutive segments.

In order for the discretized linkage to
have an energy-free rest state, the rest
curvatures measured between two con-
secutive edges should be carefully picked.
Discretizing the curves requires a special
care regarding the edge lengths, which we
handle by using a arc-length parameteri-
zation of our splines. We describe our reparameterization method in the next section. Discrete points can
be sampled along the curve so that they respect the above rules on the rest length distribution. Afterwards,
we calculate the discrete rest curvature from the turning angle between consecutive edges as explained in
Bergou et al. (2008, 2010).

This entire process, going from the design variables consisting of joint position and perpendicular offsets
of interior control points to the DER rest-state quantities, is differentiable.

4.2 Constant Speed Reparameterization of Interpolating Splines

q̃1

q̃2
q̃3 q̃4

q̃5
q̃6

q̃7 q̃8
q̃9

γ

Figure 3 Notation used.

Arc-length parameterization for cubic
spline cannot be expressed analytically,
and must be approached numerically.
Our reparameterization method consists
in fitting an interpolating cubic spline
through more interpolated points. We
now describe our method and explain
why it produces an arc-length parame-
terized approximation of a given C0 curve
γ : [0, 1] → R2 of length L(γ).

A curve γ̄ : [0, 1] → R2 is
constant speed if and only if ∀s ∈
[0, 1], ∥γ̄′(s)∥ = L(γ̄).

We start by sampling γ : [0, 1] → R2

at some locations (ti)i∈J1,nK ∈ [0, 1]n, and
call the sampled points refinement points: q̃i := γ(ti). We assume that the locations are such that t1=0,
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tn=1, and (ti)i∈J1,nK is sorted in an increasing fashion. We define the length of the polyline joining refinement

points up to i as L̃i :=
∑i

k=2∥q̃k − q̃k−1∥, and s̃i := L̃i/L̃n. We fit an interpolating cubic spline γ̃n (length
L(γ̃n)) to the set of refinement points using the knots s̃i. Hence γ̃n(s̃i) = q̃i, and we may compute

γ̃n(s̃i+1)− γ̃n(s̃i)

s̃i+1 − s̃i
=

q̃i+1 − q̃i

∥q̃i+1 − q̃i∥

n∑
k=2

∥q̃k − q̃k−1∥ ,

so that the norm of the above quantity equals L̃n. In the limit of thiner increments ∆t := maxi∈J2,nK(ti−ti−1),

and large number of samples n, the length of the polyline L̃n converges to the length of the cubic spline
L(γ̃n), which converges to the length of the initial curve L(γ). Indeed, the cubic spline γ̃n approximates γ
up to the fourth order on ∆s̃ := maxi∈J2,nK(s̃i − s̃i−1) Hall and Meyer (1976), and, by continuity of γ, ∆s̃
converges to 0 as ∆t goes to 0.

Therefore, for any ϵ > 0, we may find a fine subdivision (ti)i∈J1,nK for a large enough number of samples
n such that for any s̃i ≤ s̃ < s̃i+1

|∥γ̃′n(s)∥ − L| ≤
∣∣∣∣∥γ̃′n(s)∥ − ∥γ̃n(s̃i+1)− γ̃n(s̃i)∥

s̃i+1 − s̃i

∣∣∣∣+ ∣∣∣∣∥γ̃n(s̃i+1)− γ̃n(s̃i)∥
s̃i+1 − s̃i

− L̃n

∣∣∣∣+ |L̃n − L|

≤ ϵ+ 0 + ϵ.

The first upper bound comes from the C1 continuity of cubic splines on their domain, while the last upper
bound comes from our previous argument about polyline length convergence. This proves that, in the limit
of large refinements, our strategy produces an arc-length parameterized cubic spline that approximates γ.
Increasing the total number of refinement points n improves the reparameterization at the expense of higher
computational complexity.

5 Planarization

We describe our planarization algorithm and support our observations on the deployment kinematics on an
actual C-shell design. The algorithm takes a B-spline surface then jointly optimizes the joints positions in
the flat state and on the surface under feasibility constraints.

5.1 Variables

In this part, a C-shell is represented by its joints ci ∈ R2 and each of its constitutive rod is simplified
into a polyline connecting the joints. To each joint in the flat state, we associate a position on the target
surface given by the surface parameters (ui, vi) ∈ [0, 1]2. The surface is given by the differentiable function
S : [0, 1]2 → R3. We jointly optimize the joints positions in the flat state ci and the corresponding target
joint positions in the deployed state (ui, vi) so that it minimizes deviations to a set of kinematic rules we
observed in some designs.

5.2 Objective

Our total planarization objective E(c1, . . . , cn, u1, v1, . . . , un, vn) is composed of multiple terms we describe
later

E = Elen + Eeq + Eα + Ebnd,

where we omit dependencies of the different terms to the variables for clarity.
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5.2.1 Segments Lengths Preservation

We first observe that stretching and twisting are often negligible compared to the bending energy in the
deployed state for the cross sections used. We hence assume the polyline edges to be inextensible. The
distances between neighboring joints should be preserved in the flat and deployed states. We hence define
the segments lengths preservation term as

Elen(c1, . . . , cn, u1, v1, . . . , un, vn) :=
wlen

2 l̄0
2

∑
c

∑
i

(∥cc,i+1 − cc,i∥ − ∥S(uc,i+1, vc,i+1)− S(uc,i, vc,i)∥)2 ,

where l̄0 is the surface diameter divided by the number of edges in the linkage, and wlen is a weight that
controls the importance given to that term. The first sum is taken over each curve c in the linkage, and the
second is taken over the joints connected by the polylines. We denote by cc,i the i-th joint along curve c,
similar for (uc,i, vc,i).

5.2.2 Deployed State Equilibrium (Straight Linkage)

The deployed state we obtain from the parameters (ui, vi) may not be at equilibrium given the rest quantities
extracted from the flat joints positions ci. We simulate our linkage made of polylines as an ensemble of DERs
connected at the joints. Each curve of the C-shell is approximated by a single DER whose vertices are given
by the interpolated joints, and edges are the rod segments.

The simplified linkage has rest quantities given by p(c), where c holds all the flat joints positions, and
deformed joints positions given by c̄(u1, v1, . . . , un, vn). For some material frame angles θ, the total energy of
the deployed linkage is given by E(c̄,θ,p) :=

∑
cEc(c̄c,θc,pc), where we sum over all DERs c. The average

opening angle in the deployed state can be computed thanks to the function ᾱ(c̄). We set the material frame
angles such that the structure is as equilibrium when holding the deployed joints in place, and solve

θ∗(c̄,p) = argmin
θ

E(c̄,θ,p).

Sensitivities of the material frame angles at equilibrium to the deployed joints positions and rest quantities
can be obtained as

∂2E

∂θ2

[
∂θ∗

∂c̄

∂θ∗

∂p

]
= −

[
∂2E

∂θ∂c̄

∂2E

∂θ∂p

]
.

Denoting by λ the torque applied uniformly at the joints of the structure, we measure equilbrium based on
the force balance equation

Êeq(c̄,θ, λ,p) :=
weq

2(Y A0)2

∥∥∥∥∂E∂c̄ − λ
∂ᾱ

∂c̄

∥∥∥∥2 ,
where weq controls the importance granted to that criterion compared to other terms in the planarization
objective, and the Young modulus Y and the cross section area A0 scale the force values. The optimal torque
can be computed analytically as

λ∗(c̄,θ,p) =

∂E

∂c̄
· ∂ᾱ
∂c̄

T

∥∥∥∥∂ᾱ∂c̄
∥∥∥∥2

.
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We hence define the equilibrium criterion as

Eeq(c̄,p) := Êeq (c̄,θ∗(c̄,p), λ∗(c̄,θ∗(c̄,p),p),p) .

The gradients with respect to the deployed positions can be obtained as

∂Eeq
∂c̄

=
∂Êeq
∂c̄

+
∂Êeq
∂θ

∂θ∗

∂c̄
+
�

�
��

0

∂Êeq
∂λ

(
∂λ∗

∂c̄
+
∂λ∗

∂θ

∂θ∗

∂c̄

)
=

weq

2(Y A0)2

(
∂E

∂c̄
− λ∗

∂ᾱ

∂c̄

)(
∂2E

∂c̄2
− λ∗

∂2ᾱ

∂c̄2
+

∂2E

∂c̄∂θ

∂θ∗

∂c̄

)
=

weq

2(Y A0)2

[(
∂E

∂c̄
− λ∗

∂ᾱ

∂c̄

)(
∂2E

∂c̄2
− λ∗

∂2ᾱ

∂c̄2

)
+ yT

eq

∂2E

∂θ∂c̄

]
,

where the adjoint state vector yeq satisfies the following linear system

∂2E

∂θ2 yeq = −
(
∂E

∂c̄
− λ∗

∂ᾱ

∂c̄

)T

.

Similarly, the gradient with respect to the rest quantities reads

∂Eeq
∂p

=
∂Êeq
∂p

+
∂Êeq
∂θ

∂θ∗

∂p
+
�

�
��

0

∂Êeq
∂λ

(
∂λ∗

∂p
+
∂λ∗

∂θ

∂θ∗

∂p

)
=

weq

2(Y A0)2

[(
∂E

∂p
− λ∗

∂ᾱ

∂p

)
∂2E

∂p2 + yT
eq

∂2E

∂θ∂p

]
.

The gradient with respect to the flat joints positions are then obtained through autodifferentiation using
PyTorch. We use the analytical B-spline surface derivatives to backpropagate ∂E

∂c̄ to the gradient with respect
the surface parameters (ui, vi).

5.2.3 Opening Angles Increment Spread

In our designs, we also observed that the opening angles were all either opening or closing as the linkage
deploys. We prevent opening angles to open and close at the same time in the linkage by reducing the
variance of the opening angle increments. We define the signed opening angle of a quadrilateral q as αq :=
∠(cq,2 − cq,1, cq,4 − cq,1), where the 4 vertices are numbered consistently accross the quadrilaterals in the
linkage. Similar for the opening angles in the deployed states ᾱq. We define the opening angle increments
as ∆αq = ᾱq − αq, and our term reads

Eα(c1, . . . , cn, u1, v1, . . . , un, vn) :=
wα

2
Varq [∆αq] .

5.2.4 Soft Boundary Joint Pinning

The last term softly enforces pinning constraints to boundary joints (ub,i, vb,i) to some user-defined positions

c̄
(tar)
b,i ∈ R3 as

Ebnd(u1, v1, . . . , un, vn) :=
wbnd

2 l̄0
2

∑
i

∥∥∥S(ub,i, vb,i)− c̄
(tar)
b,i

∥∥∥2 ,
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Figure 4 Self-intersection detection for quadrilaterals. We triangulate the quadrilateral in two ways (rows (a)
and (b)) and compute the signed area of the triangles. The dashed lines represent the quadrilateral’s triangula-
tion. Checking that at least one triangulation produces two positively oriented triangles ensures the transformed
quadrilateral to be non self-intersecting.

where the sum is taken over the boundary joints, wbnd enables tuning the importance given to that term,
and l̄0 is the previously defined length scale.

5.3 Constraints

We first constrain the deployed joints variables (ui, vi) to lie within the range [0, 1]. Second, the quadrilaterals
should not self-intersect in the flat state. For that, we triangulate the quadrilaterals in two ways and compute
the signed areas of the triangles, see Figure 4. We requires that at least one of the two triangulations of a
quadrilateral q has two positively oriented triangles:

max(min(SAq,412,SAq,234),min(SAq,123,SAq,341)) > ϵarea|S|, (A1)

where SAq,ijk computes the signed area of the triangle of vertices i, j, k in quadrilateral q, and |S| is the
area of the target surface. ϵarea determines how far we want the quadrilaterals from being self-intersecting.

6 Design Optimization

Our design optimization consists in minimizing the function J̄ of the curves degrees of freedom and average
opening angle q̄

J̄(q̄) := J (qip(q), p̄(q̄)) , J(qip, p̄) :=
1

E0
E(x̄∗

3D(p̄),p) + Tt(x̄
∗
3D(p̄)) +R(qip,p), (A2)

where qip are the intermediate interpolated points constructed from the joints positiions and orthogonal
offsets stored in q.

6.1 Fairness Regularization

The last term in the definition of J is a regularization that we split into two parts
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R(qip,p) :=
wip

2l20
∥Lipqip − qip,f∥22︸ ︷︷ ︸
wipRip(qip)

+
wκ

2κ̄0
pT
κLpκ︸ ︷︷ ︸

wκRκ(p)

. (A3)

The first term is a fairness term that measures the Dirichlet energy of the directed graph of interpolated
points. We build this graph by first connecting the interpolated points qip and their neighbors along each
curve from the curve linkage. Then, we remove the edge going from inner interpolated points to either one
of each curve endpoints. This prevents the boundary from shrinking. Interpolated points with no inward
pointing edges are labeled as fixed and are stored in the constant vector qip,f ∈ R2nip . This vector also
contains 0s wherever the associated interpolated point is not fixed. The user may remove edges to fix
additional interpolated points. Lip is the uniform Laplacian matrix associated to the interpolated points
graph.

The second term penalizes the deviation of the rest curvature at a vertex to the average of its two
neighboring vertices along each rod. We use the average of the rest lengths of the rod segments κ̄0 to scale
the regularization term. We define pκ to extract the rest curvatures from the vector of rest quantities p,
and L as the 1D uniform Laplacian matrix.

The coefficients wip and wκ control the importance given to each of the two terms.

6.2 Gradients and Hessian-Vector Products

The objective J̄ in Equation (A2) is minimized using an off-the-shelf Sequential Linear-Quadratic Program-
ming (SLQP) algorithm provided by Knitro Waltz and Nocedal (2004). The EQP part is solved using a
Newton-CG like approach, which requires computing gradients and Hessian-Vector Products (HVPs) of the
objective with respect to the curves degrees of freedom q̄. This vector also includes the target average
opening angle ᾱq. We first expose the gradients and HVPs with respect to the rest quantities p, and ᾱp.
Then, we explain how they relate to the same quantities expressed with respect to design parameters.

6.2.1 Rest Quantities

We define an objective function that depends on the interpolated points, the deployed degrees of freedom,
and the rest quantities as

J̃(qip, x̄3D, p̄) :=
1

E0
E(x̄3D,p) + Tt(x3D) +R(qip,p).

The previously defined objective as a function of the rest quantities can be written as J(qip, p̄) = J̃(qip, x̄
∗
3D(p̄), p̄).

We express the first-order KKT conditions for the deployed equilibrium problem x̄∗
3D(p̄) := argminx̄ Ē(x̄,p)

subject to ᾱx = ᾱp


∂Ē

∂x̄

∣∣∣∣
x̄∗
3D(p̄),p̄

+ λ(p̄)eTᾱ = 0

ᾱ∗
x(p̄) = ᾱp,

where λ(p̄) is the Lagrange multiplier of the equality constrained minimization problem. Differentiating
gives the KKT system shown below
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H3D
∂x∗

3D

∂p̄
= −

[
∂2Ē

∂x∂p

∂2Ē

∂x∂ᾱx

]
∂2Ē

∂ᾱx∂x

∂x∗
3D

∂p̄
+

[
∂2Ē

∂ᾱx∂p

∂2Ē

∂ᾱx∂ᾱx

]
= −∂λ

∂p̄

∂ᾱ∗
x

∂p
= 0

∂ᾱ∗
x

∂ᾱp
= 1,

(A4)

where H3D := ∂2Ē
∂x2 (x̄∗

3D(p̄),p) is the Hessian of the elastic energy and surface attraction term of the deployed

linkage with respect to the rod linkage degrees of freedom, and p̄ := [pT ᾱt]
T. We then define the adjoint

state vector w as

H3Dw =
∂J̃

∂x

T

,

where the gradient ∂J̃
∂x can be computed analytically using the elastic rods model, see Panetta et al. (2019)

for details. The overall gradient of the objective J with respect to the rest quantities can be written as

∂J

∂p̄
= wT

[
∂2Ē

∂x∂p

∂2Ē

∂x∂ᾱx

]
+

[
0

∂J̃

∂ᾱx

]
+
∂J̃

∂p̄
.

The derivative of the objective J with respect to the interpolated points is computed analytically as ∂J
∂qip

=

βip
∂Rip

∂qip
.

We now compute the HVP for J along a given direction δp̄. First, we write the KKT system in Equa-
tion (A4) along that direction to obtain

δx̄∗
3D =

−H−1
3D

(
∂2Ē

∂x∂p
δp+

∂2Ē

∂x∂ᾱx
δᾱp

)
δᾱp

 , (A5)

where we define for short δx̄∗
3D :=

∂x̄∗
3D

∂p̄ δp̄. Similarly, the perturbation of the adjoint state vector δw := ∂w
∂p̄ δp̄

must satisfy the linear system given by

H3Dδw =
∂2J̃

∂x∂x̄
δx̄∗

3D +
∂2J̃

∂x∂p
δp−

(
∂3Ē

∂p∂x∂x̄
δx̄∗

3D +
∂3Ē

∂p∂x∂p
δp

)
w.

The full HVP can then be written as

∂2J

∂p̄2 δp̄ = −


∂2Ē

∂p∂x

∂2Ē

∂ᾱx∂x

 δw −


∂3Ē

∂p∂x∂x̄
δx̄∗

3D +
∂3Ē

∂p∂x∂p
δp

∂3Ē

∂ᾱx∂x∂x̄
δx̄∗

3D +
∂3Ē

∂ᾱx∂x∂p
δp

w (A6)

+

 0

∂2J̃

∂ᾱx∂x̄
δx̄∗

3D +
∂2J̃

∂ᾱx∂p̄
δp̄
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+
∂2J̃

∂p̄∂x̄
δx̄∗

3D +
∂2J̃

∂p̄∂p̄
δp̄.

The Hessian of J with respect to the control points is simply given by βip/l
2
0 LT

ipLip. Third order derivatives
of the energy are obtained through automatic differentiation as explained in Panetta et al. (2019).

6.2.2 Design Parameters

Gradients of J̄(q̄) can be obtained by backpropagating the gradients of J(qcp,p̄). In practice, this consists in
computing the Vector-Jacobian Product (VJP) and it is performed efficiently using reverse-mode automatic
differentiation.

Second order derivatives are more expensive to obtain using automatic differentiation since the compu-

tation graph must be traversed multiple times. While constructing the full Hessian ∂2J̄
∂q̄2 is prohibited, HVPs

can be computed using the previously introduced HVPs as

∂2J̄

∂q̄2 δq̄ =
∂p̄

∂q̄

T ∂2J

∂p̄2

∂p̄

∂q̄
δq̄+

∂

∂q̄

(
∂

∂q̄

(
gT
p̄ · p̄

)
· δq̄

)
+
∂qip

∂q̄

T ∂2J

∂qip
2

∂qip

∂q̄
δq̄

+
∂

∂q̄

(
∂

∂q̄

(
gT
qip

· qip

)
· δq̄

)
,

(A7)

where we define the constant vectors equal to the current gradients of the objective gT
p̄ := ∂J/∂p̄ and

gT
qip

:= ∂J/∂qip.

6.3 Extended Rest Quantities Update

When updating the extended rest quantities by an increment δp̄, we estimate the change in the deployed
state configuration by truncating the following Taylor expansion up to the second order

x̄∗
3D(p̄+ δp̄) = x̄∗

3D(p̄) +
∂x̄∗

3D

∂p̄
δp̄+ δp̄T ∂

2x̄∗
3D

∂p̄2 δp̄+O(∥δp̄∥3).

The first-order modification of the degrees of freedom can be obtained by solving the system shown in
Equation (A5). The second order perturbation of the deployed degrees of freedom at equilibrium can be
obtained by differentiating Equation (A5) as shown below:


H3Dδp̄

∂2x∗
3D

∂p̄2 δp̄ = −
[

∂3Ē

∂x∂x̄∂x̄
δx̄∗

3D +
∂3Ē

∂x∂x̄∂p
δp

]
δx̄∗

3D −
[

∂3Ē

∂x∂p∂x̄
δx̄∗

3D +
∂3Ē

∂x∂p∂p
δp

]
δp

δp̄
∂2ᾱ∗

x

∂p̄2 δp̄ = 0.
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