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Figure 1: Our custom-tuned high-performance cut-cell Multigrid Preconditioned Conjugate Gradient (MGPCG) solver combined
with a fast subspace initialization enables a tractable voxel-level layer-by-layer physics-based objective term for promoting
robustly manufacturable designs at high resolution.

ABSTRACT
Topology optimization and additive manufacturing together enable
the optimal design and direct fabrication of complex geometric
parts with groundbreaking performance for diverse applications.
However constraining the optimization to ensure that the gener-
ated object can be reliably manufactured via layer-by-layer 3D
printing processes is challenging. The typical solution is to enforce
design rules based only on geometric heuristics like overhang an-
gles, minimum wall widths, and maximum bridge spans. Recent
work has proposed instead to simulate the robustness of each par-
tial object generated from bottom-to-top during the fabrication
process as a more accurate, physics-aware printability assessment.
However, this approach comes at the cost of an vast increase in the
number of simulations run per design iteration, making existing im-
plementations intractable at high resolution. We demonstrate that
by developing a custom solver leveraging the close relationships
between these many simulations, even voxel-level layer-by-layer
simulations are feasible to incorporate into high-resolution 2D and
3D topology optimization problems on a single workstation.
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1 INTRODUCTION
Digital fabrication and additivemanufacturing in particular promise
to revolutionize designs across a broad range of application domains.
The primary limiting factor is the tools we have at our disposal for
discovering and optimizing new classes of designs. Arguably the
most powerful and general of such tools is topology optimization
which gives an optimization algorithm free reign to construct novel
high-performance designs from scratch. The downside is that, with-
out carefully constraining its exploration, topology optimization
is prone to generate designs that are not manufacturable by our
fabrication technologies—at least not without a post-processing
stage in which an expert engineer manually reinterprets the design,
potentially sacrificing some of its optimized performance.

Numerous efforts have been made over the years to develop
constraints that ensure objects can be sent directly to the fabrication
machine without heavy post-processing. These efforts typically
center around enforcing geometric proxies for printability like
minimum feature thicknesses and overhang angles. However, what
ultimately matters is whether the part can survive the printing
process and emerge as a faithful manifestation of the generated
design. We believe that ideal solution is to directly analyze each
intermediate stage of the fabrication process via simulation, and
in this paper we consider the layer-by-layer fabrication of additive
manufacturing. Past work [Allaire et al. 2017; Haveroth et al. 2022]
has proposed to model this process by running a large number of
simulations of partially printed parts, and in our paper, we show that
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with several new insights and algorithms, this is actually feasible
to do at realistic resolutions.

Specifically, our work makes the following contributions:
• An efficient cut-cell multigrid preconditioned conjugate gra-
dient (MGPCG) solver to support the continually changing
size of the simulation grid with neither the overhead of
rebuilding the MG hierarchy nor the implementation com-
plexity of supporting non-power-of-two grid coarsening.

• An inexpensive strategy for generating high-quality initial-
izations for the MGPCG solve.

• An investigation of how cost and effectiveness of the layer-
by-layer objective scale with solver parameters like force
residual tolerance and downsampling levels, showing the fea-
sibility of layer-by-layer simulation for realistic-scale design
problems in terms of both time and space complexity.

We emphasize that although our validation and analyses in Sec-
tion 5 are performed by incorporating our term in a traditional
compliance minimization design problem, the term can be included
to enforce robust printability in any topology optimization design
problem (e.g., topology optimization of metamaterials [Panetta et al.
2015; Schumacher et al. 2015], compliant mechanisms [Nishiwaki
et al. 1998], heat sinks [Yan et al. 2019] and fluidic devices [Du et al.
2020]). We are releasing our high-performance implementation
as open source, and we hope that it will be a valuable asset for
fabrication-aware multidisciplinary topology optimization.

2 RELATEDWORK
Density and level set-based topology optimization. Topology op-

timization for performance metrics governed by elasticity and
other physics is a broad area encompassing a vast body of related
work. Most competitive approaches to topology optimization can
be broadly categorized into two general frameworks: density-based
[Bendsoe and Sigmund 2003] and level-set [Van Dijk et al. 2013].
Density-based methods divide the design domain into a regular
grid of voxels and introduce density variables controlling which
material (if any) fills each voxel. Level-set topology optimization
instead optimizes for one or more level-set functions defined over
the domain whose zero contours represent the boundary of the
solid regions and the interfaces between materials. For density-
based methods, it is most natural and common to solve the state
equations (i.e., the physics PDE constraints) over the same regular
grid mesh introduced to define the density field. Level-set methods
can solve the state equations either by rasterizing the sublevel sets
to a regular grid mesh (the “ersatz material approach” [Allaire et al.
2004]) or by extracting a conforming unstructured finite element
mesh of them [Dapogny et al. 2014]. Our solver can be used for
either framework, provided a regular grid mesh is used for the
solve, though our validations are performed in the density-based
framework.

Multigrid Solvers in Topology Optimization. The extreme resolu-
tions and regular structure of the rectangular grid meshes employed
in density-based topology optimization make geometric multigrid
solvers in general, and the multigrid preconditioned conjugate gra-
dient method in particular, an excellent choice. Recent instances
of this line of work in the computer graphics and computational
fabrication are a GPU-accelerated solver developed by Wu et al.

[2016] and a narrow-band solver employing a sparse grid data
structure developed by Liu et al. [2018]. We choose to implement
our high-performance solver on the CPU rather than the GPU for
improved memory capacity and implementation flexibility. Like-
wise, we choose to work with a simple regular grid data structure
to simplify our implementations. We note that the narrow-band
approach cannot provide gains at the initial stages of topology
optimization from a completely agnostic uniform-density initial-
ization (the peak memory bottleneck). Amir et al. [2014] provides
an insightful discussion of the influence of contrast ratio on the
convergence of MGPGC solvers, an issue we have noticed in our
experiments, especially with the large number of void voxels that
appear when masking out yet-to-be-printed layers, which we ad-
dress in Section 4.1.1. We comment more on this issue in Section 6.

AM Constraints in Topology Optimization. For lack of a compu-
tationally tractable simulation-based approach to promoting man-
ufacturability, many heuristic geometric-based approaches have
been developed, aiming at enforcing certain design rules like mini-
mum thickness constraints and overhang angles. In density-based
methods, minimum thickness constraints are typically handled us-
ing a filtering approach [Wang et al. 2011], and several overhang
constraint formulations have been developed [Gaynor and Guest
2016; Langelaar 2017; Qian 2017], though these are approximate,
require parameter tuning, and can exhibit poor convergence. In
the level-set framework, Allaire et al. [2016] propose and analyze
several formulations for minimum thickness constraints with vari-
ous trade-offs and implementation challenges; none offers a perfect
solution to this fundamentally difficult problem of enforcing such
a non-local constraint. These constraint formulations also do not
admit a topological derivative (needed to nucleate new holes).

Layer-By-Layer Objectives. Our work was inspired by Allaire
et al. [2017], who introduced the idea of layer-by-layer simulation
in the level-set topology optimization framework. Their work re-
ported hundreds of hours spent optimizing a 300 × 100 2D example,
though explicitly mentions no efforts were made to accelerate the
implementation. The strategy they propose to reduce the compu-
tation time is to evaluate not only the partial object compliance
but also its derivative with respect to printing height of a smaller
number of intermediate shapes so that a first-order approximation
can be constructed. This scheme is still slow without the sorts of
optimizations we contribute (around 80 hours for the same 2D ex-
ample) and risks poor approximation: we note that compliances of
unprintable designs in particular often change discontinuously as a
function of layer height, an effect that cannot be captured by even a
higher order Taylor expansion-based strategy. Concurrently to our
work, Haveroth et al. [2022] have brought the layer-by-layer self-
weight compliance idea to the density-based topology optimization
framework. They again do not pursue the sorts of accelerations we
contribute (using a direct solver in 2D and an off-the-shelf PCG
solver in 3D) and instead focus on the layer skipping strategy with-
out a first-order approximation.

Staged Fabrication Objectives. The layer-by-layer fabrication pro-
cess of 3D printing can be generalized to any multi-stage process
that fabricates the object by attaching one (potentially curved) piece
at a time. Amir and Mass [2018] perform topology optimization in
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a design domain that has been manually partitioned into a number
of ordered stages. Wang et al. [2020] extend this idea by simul-
taneously optimizing the segmentation and fabrication sequence
of the design along with its shape and topology. Neither of these
works attempts to accelerate the per-stage simulation problems,
and the expense of the solves restricts them to consider a limited
number of discrete stages that can easily fail to resolve problematic
sub-stage geometry. Extending our cut-cell solver and initialization
strategies to address the curved segmentations employed in these
formulations is an interesting direction for future work.

Worst-Case Design and Stochastic Analysis. One effective strat-
egy for designing objects to be robust against uncertain loads (for
instance, if loads the part will be subjected to during fabrication
and shipment are difficult to predict) is to analyze and optimize
them under worst-case load. The worst-case stress analysis prob-
lem was addressed in [Zhou et al. 2013] for general parts under
hand manipulation, and the problem of optimal design under worst-
case loads has been addressed for compliance by [Cherkaev and
Cherkaev 2008], for stresses in periodic microstructures in [Panetta
et al. 2017], and for the asymmetric stress-based yield criteria of
concrete-type materials in [Schumacher et al. 2018]. When the
worst-case scenario is unrealistically pessimistic, a stochastic ap-
proach like [Langlois et al. 2016] can be preferable that determines
the likelihood of failure by running a large number of simulations
with random initial conditions. However, all of these works con-
sider the robustness of the fully formed part and cannot guarantee
robustness of intermediate structures during fabrication. Consid-
ering how much more expensive these worst-case and stochastic
formulations tend to be than simulation under known loads, devel-
oping a tractable layer-by-layer worst-case optimization would be
an interesting but challenging future research direction.

Simulating the Printing Process. The layer-by-layer self-weight
simulations we perform are intended as a rough physical model of
the printing process. However, they are far from a precise, detailed
simulation of the physics at play, which limits the predictive power
of our robustness measure. More precise simulation necessarily
must be heavily tailored to the specific targeted additive fabrication
technology; for example, simulations of varying complexity have
been developed for metal (L-PBF and DED) [Bayat et al. 2021],
MultiJet [Kim et al. 2016], and extrusion [Faria et al. 2020; Oyinloye
and Yoon 2021] printers. These more sophisticated and expensive
simulations have not yet been incorporated in the inner loop of a
topology optimization.

Model Reduction. Our initialization strategy can be viewed as em-
ploying model reduction [Sifakis and Barbic 2012] to approximately
solve the simulation problem. This approach is widely popular in
graphics [Barbič and James 2005; Treuille et al. 2006; Xu et al. 2015],
particularly for interactive applications where speed matters more
than accuracy. They have, however, found use in less obvious way
for stress analysis in fabrication applications [Chen et al. 2016].
We employ model reduction as an initialization for a solver with
directly tunable accuracy that is independent of the reduced basis.
Traditional model reduction typically requires an expensive offline
basis construction that is incompatible with our use case of accel-
erating solves on a constantly-changing design. We instead use a

natural, high-quality low-dimensional basis that comes essentially
for free and supports an efficient construction of the reduced model
equations via a recursive update rule.

3 BACKGROUND
The printability regularization term that we seek to accelerate sim-
ulates deformation under self-weight of an object attached to the
build platform during intermediate stages of the 3D printing pro-
cess (when only part of the structure has been fabricated). We first
review the standard topology optimization formulation for stiffen-
ing linearly elastic objects against deformations under self-weight
and then introduce the layer-by-layer objective term.

3.1 Self-Weight Compliance Minimization
Single-material density-based topology optimization represents the
design in the form of a density field 𝜌 : Ω → [0, 1] expressing the
material occupancy at each point within the design domain Ω. Solid
regions are represented by 𝜌 = 1 and void by 𝜌 = 0. The volume of
material used is therefore𝑉 (𝜌) :=

∫
Ω𝜌 dx, and the self-weight force

density is given by the vector field 𝜌g where g is the gravitational
acceleration vector multiplied by the physical mass density of the
fabrication material.

To evaluate stiffness of a candidate design, first the following
linear elasticity PDE in 𝑑-dimensions is solved for the displacement
field u : Ω → R𝑑 :

−∇ · 𝜎 = 𝜌g in Ω

u = 0 on Γbottom

𝜎n = 0 on 𝜕Ω \ Γbottom
(1)

𝜎 := 𝐶 (𝜌) : 1
2
(∇u + (∇u)⊤)︸              ︷︷              ︸

Y (u)

,

and then the compliance 1
2
∫
Ωu · 𝜌g dx is evaluated. Notice that a

Dirichlet constraint is used to glue the bottom of the design domain
Γbottom to the build platform, while the rest of the faces are left
traction free (𝜎n = 0). In this equation, 𝐶 (𝜌) denotes the elastic-
ity tensor of the material mixture associated with infill density 𝜌 .
Whereas density values 𝜌 = 1 and 𝜌 = 0 have obvious physical
meaning as fully solid and void, the properties of intermediate den-
sity levels are typically defined using a heuristic interpolation law.
We employ the RAMP interpolation law [Stolpe and Svanberg 2001]
recommended in the literature for optimization under self-weight
loads since the common SIMP interpolation law has been shown to
be problematic in this setting [Bruyneel and Duysinx 2005]:

𝐶 (𝜌) := 𝑠 (𝜌)𝐶base, 𝑠 (𝜌) := 𝑠min +
𝜌 (𝑠max − 𝑠min)
1 + 𝑞(1 − 𝜌) , (2)

where 𝐶base = 𝐶 (1.0) is the elasticity tensor of the fully solid fabri-
cation material that the scaling function 𝑠 (𝜌) attenuates according
to the infill density. Notice that this interpolation law interpolates
down to 𝑠 (0) = 𝑠min > 0 in the void regions; a small stiffness is
retained so that the simulation remains well-posed (and a singular
matrix is avoided in the discretized linear system). This contrast
ratio parameter 𝑠min strongly influences the conditioning of the
linear system as discussed in Section 4.1.1 and Section 6; we select
𝑠min = 10−5 for all of our benchmarking experiments.
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We employ a standard finite element discretization on a regular
grid of bilinear rectangle elements (𝑑 = 2) or trilinear voxel elements
(𝑑 = 3). Denoting the element resolution along each dimension by
𝑁𝑥 , 𝑁𝑦, and 𝑁𝑧 , there are 𝑛n = (𝑁𝑥 + 1) (𝑁𝑦 + 1) (𝑁𝑧 + 1) nodes
and 𝑛e = 𝑁𝑥𝑁𝑦𝑁𝑧 elements in the 3D case. We obtain the discrete
counterpart to (1),

𝐾 (𝜌fem)ufem (𝜌fem) = ffem (𝜌fem),

𝐾 (𝜌fem) :=
∑︁
𝑒

𝑠 (𝜌fem [𝑒])𝑆𝑒⊤𝐾0𝑆𝑒 ,

ffem (𝜌fem) :=
∑︁
𝑒

(𝜌fem [𝑒])𝑆𝑒⊤f0,
(3)

with discrete nodal displacement and load fields ufem, ffem ∈ R𝑑𝑛n
and element densities 𝜌fem ∈ [0, 1]𝑛e . Here 𝑆𝑒 is a selection matrix
that extracts the 𝑑 2𝑑 displacement variables associated with the
corners of element 𝑒 from a nodal field vector; it is used here to
assemble the per-element stiffness matrix and load contributions
for each element 𝑒 into the global sparse matrix 𝐾 and load vector
ffem. The precomputed quantities 𝐾0 ∈ R𝑑2𝑑×𝑑2𝑑 and f0 ∈ R𝑑2𝑑

are the stiffness matrix and gravity load vector produced by a single
full density reference element R with vector-valued finite element
basis functions

−→
𝜙 𝑖 :

[𝐾0]𝑖 𝑗 :=
∫
R
Y (−→𝜙 𝑖 ) : 𝐶base : Y (−→𝜙 𝑗 ) dx,

[f0]𝑖 :=
∫
R
(𝜌fem [𝑒]) −→𝜙 𝑖 · g dx.

To enforce the u = 0 Dirichlet conditions, the associated rows
and columns of 𝐾 are replaced with the corresponding rows and
columns of the 𝑑𝑛n×𝑑𝑛n identity matrix, and the associated entries
of ffem are set to zero. After solving (3), we can evaluate the self-
weight compliance:

𝐽 (𝜌fem) :=
1
2
ufem (𝜌fem) · ffem (𝜌fem).

Key to the efficiency of our method, the gradient of self-weight
compliance 𝜕𝐽

𝜕𝜌fem
can be evaluated without solving an adjoint equa-

tion due to the self-adjoint nature of the compliance objective:

𝜕𝐽

𝜕𝜌fem
=

1
2

𝜕f
𝜕𝜌fem

· ufem + 1
2
ffem · 𝐾−1︸      ︷︷      ︸

ufem ·

(
𝜕ffem
𝜕𝜌fem

− 𝜕𝐾

𝜕𝜌fem
ufem

)
=

𝜕f
𝜕𝜌fem

· ufem − 1
2
ufem · 𝜕𝐾

𝜕𝜌fem
ufem .

The required derivatives 𝜕f
𝜕𝜌fem

and 𝜕𝐾
𝜕𝜌fem

are straightforward to
compute from (3) and yield the following efficient, explicit formula
for the derivative with respect to the density of element 𝑒 in terms
of the element corner displacements u𝑒 = 𝑆𝑒ufem:[

𝜕𝐽

𝜕𝜌fem

]
𝑒

= u𝑒 · f0 −
1
2
𝑠 ′(𝜌fem [𝑒])u𝑒 · 𝐾0u𝑒 .

Directly minimizing compliance with respect to each element’s
density variable is notorious for producing nonphysical, mesh-
dependent artifacts like artificially stiff checkerboard patterns [Sig-
mund and Petersson 1998]. We avoid this using the standard filter-
ing approach: we express the simulation densities 𝜌fem in terms of
design parameters p via a chain of filters: 𝜌fem = F (p). Specifically,

we use a radial smoothing filter with linearly decaying coefficients
[Bruns and Tortorelli 2001] to blur the design followed by a Heavi-
side projection filter to sharpen it. Derivatives with respect to 𝜌fem
are backpropagated through F to obtain the optimization gradient
𝜕𝐽 (F(p))

𝜕p . We note that our method is fully compatible with alter-
native strategies for ensuring mesh-independence, such as using
a neural design representation with direct control over the spatial
frequency of the design [Doosti et al. 2021].

Putting everything together, the standard discrete formulation of
compliance minimization seeks the stiffest structure under a given
volume budget 𝑉max:

min
p
𝐽 (F (p)) s.t.

∑︁
𝑒

𝜌fem [𝑒]Vol(𝑒) ≤ 𝑉max . (4)

3.2 Layer-By-Layer Simulation

Figure 2: Partial structures within the partial design domains
Ω (𝑙) fabricated at intermediate stages of the printing process
(𝑙 completed layers).

The layer-by-layer simulation objective term that our work accel-
erates builds on the discrete self-weight compliance 𝐽 (𝜌fem). The
underlying idea is that if any partial structure generated during
the fabrication process exhibits weak or unprintable features (in
the extreme, a detached solid region due to downward hanging
geometry), this can be detected as significant drooping under self-
weight that induces high compliance. Denoting by Ω (𝑙) the partial
design domain including only the bottommost 𝑙 “layers,” we can re-
strict the design’s density field 𝜌fem to Ω (𝑙) and follow the previous
section to compute its FEM load vector f (𝑙) , nodal displacements
u(𝑙) , and finally compliance 𝐽 (𝑙) := u(𝑙 ) ·f (𝑙 )

2 . Averaging the com-
pliance over all 𝐿 layer simulations obtains a global physics-based
Layer-By-Layer measure, 𝐽LBL, of the object’s robustness during
fabrication:

𝐽LBL (𝜌fem) :=
1
𝐿

𝐿∑︁
𝑙=1

𝐽 (𝑙) (𝜌fem) .

Evaluating this objective term requires solving 𝐿 elasticity simula-
tions. We aim to evaluate this objective at the voxel level (𝐿 = 𝑁𝑦 ),
or as close to it as possible, so that no hanging features are missed
by skipping layers. The vast number of simulations this entails
necessitates a highly efficient solver and new algorithms that we
develop in the next section.

4 METHOD
Our main insight is that the close relationships between the 𝐿 sim-
ulation problems solved for each fabrication stage can be exploited
to dramatically accelerate the solver. We first develop a highly effi-
cient multigrid-preconditioned conjugate gradient (MGPCG) solver
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tailored specifically to the layer-by-layer simulation setup (which
necessarily involves operating on grids with non-power-of-two
sizes along 𝑁𝑦 ), described in Section 4.1. As an iterative method,
our solver can benefit from good initial guesses, and our second
contribution is an efficient method for constructing high-quality
initializations by solving a reduced elasticity problem over the sub-
space spanned by a small number of previous layer simulations
(Sections 4.2-4.3). Finally, we show how the gradient 𝜕𝐽LBL

𝜕𝜌fem
can

be evaluated quickly and with space complexity independent of 𝐿
(Section 4.4).

Our approach is most effective when the simulation problems
are solved top-to-bottom, in order of decreasing 𝑙 : this way, updates
to the linear systems are sparse, and information from the previous
𝑁 solves on domains Ω (𝑙+𝑁 ) ⊃ · · · ⊃ Ω (𝑙+1) is available on the
entirety of domain Ω (𝑙) .

4.1 Multigrid Preconditioner
Our starting point is a geometric multigrid preconditioner similar
to those developed in recent high-resolution topology optimization
efforts [Liu et al. 2018; Wu et al. 2016]. Like Liu et al. [2018], we
employ 𝑉 -cycles with a 𝑑 × 𝑑 block Gauss-Seidel smoother and
carefully vectorize and parallelize all operations. We differ from
both past works in using matrix-free matvecs and smoothers for
not only the finest grid, but also the second-finest (performing the
first level of coarsening on the fly); explicitly constructing the first
coarsened sparse block stiffness matrix incurs a multifold increase
in the solver’s memory requirements and degrades performance
due the high memory bandwidth requirements in our experiments.
We also implement full multigrid [Briggs et al. 2000], which we find
accelerates the solves of the full design simulations, but disable for
the subsequent partial object simulations. For partial simulations,
we find the cheaper—though less effective—pure V-cycle precon-
ditioner to strike a better trade-off. This is because, thanks to our
high-quality initializations, our solver typically requires fewer than
one PCG iteration per simulation on average to reduce the force
residual below an acceptable tolerance, and this iteration count can-
not be reduced much by employing a more effective preconditioner
in any one solve.

4.1.1 Cut-Cell Preconditioner. Our most significant deviation from
pastMGPCG solvers regards our handling of the constantly-changing
non-power-of-two grid sizes along the build direction. The easiest
approach would be simply to set to zero the entries of 𝜌fem for
elements above the 𝑙 retained layers and solve over the full grid. Of
course this involves wasted computation within each PCG iteration
solving for the displacements of superfluous void nodes. But the
problem actually is worse: the nearly-undefined displacements of
nodes in the ultra-low stiffness void regions are difficult to predict
by our initialization strategy, requiring more PCG iterations Sec-
tion 5.1. Consequently, it is beneficial to restrict our solver to only
the 𝑙 layers of the grid that are actively simulated, which means
solving on a grid whose vertical element resolution is arbitrary. The
most principled approach would be support a mix of 2-to-1, 3-to-1,
and possibly more coarsening rules, but this involves significant
implementation complexity, especially if one wishes to avoid a full
reconstruction of the multigrid hierarchy on every grid change
(Section 4.1.2).

We instead propose a simple and efficient cut-cell approach that
retains the excellent convergence rate of standard MGPCG. Con-
ceptually, we set both 𝜌 and the elasticity tensor attenuation factors
(𝑠 (𝜌) in (2)) to precisely zero for all elements above layer 𝑙 , which
we emphasize is different from setting entries of 𝜌fem alone to zero.

Figure 3: Partially occu-
pied coarsened cells in
our multigrid hierarchy
(blue). Detached nodes
at the coarsest, second-
coarsest, and fine level
are visualized by over-
lapping, progressively
smaller red circles.

This introduces a high dimensional
nullspace in 𝐾 that is harmless for
the CG algorithm itself: CG essen-
tially ignores the nullspace, taking
no steps within it and accumulat-
ing no residual from it. However, it
breaks the Gauss-Seidel smoother
for certain detached nodes in the
multigrid hierarchy and leads to
a singular system at the coarsest
level that causes the direct solve
(Cholesky factorization) employed
there to fail. We correct this by
identifying these detached nodes—
nodes at any level within the MG
hierarchy whose coarsened shape
functions’ supports overlap only the
zero-stiffness elements above layer
𝑙—and omitting them from smooth-
ing and pinning their displacements
to zero for the coarse Cholesky solve. Detached nodes at a given
coarse grid in the hierarchy can be identified in constant time by
checking whether the neighboring coarse node below is directly at
or above the top border of the partial design domain Ω (𝑙) (Figure 3).

For a ∼ 2× speedup, we also skip all other operations involv-
ing these detached nodes in the MGPCG algorithm (all matvecs,
interpolation, restriction, dot products, etc.), effectively eliminating
them from the system so that only the partial grid is solved. Up to a
variable rescaling, our approach can be interpreted as the implemen-
tation of two different vertical coarsening schemes: the standard
2-to-1 scheme away from the layer and no-op 1-to-1 scheme in the
vicinity of the boundary.

Figure 4: We update
stiffnesses matrices only
for coarsened elements
overlapping the modified
layer(s), visualized in red
for update interval [4, 6).

4.1.2 Fast Coarsening Updates. Re-
computing the coarsened stiffness
matrices is a bottleneck if done from
scratch upon each layer removal. A
moderate speedup can be gained for
especially loose residual tolerances
by updating lazily, only when the
simulation needs at least one PCG
iteration. However, full brute-force
updates of the coarsening hierar-
chy are still costly with this strat-
egy. Our implementation acceler-
ates these MG hierarchy updates
by leveraging the fact that actually
only a small fraction of the coars-
ened stiffness matrices must change
(those for elements overlapping the
layer(s) that were removed since the
last update). We maintain a record of the current layer height for
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which the coarsened stiffnessmatrices have been computed, 𝑙current .
The first time a PCG iteration is needed for the simulation at layer
height 𝑙 , we check if 𝑙 < 𝑙current, and if so perform a sparse update
for layer interval [𝑙, 𝑙current), clearing the stiffnesses of the fine ele-
ments whose zero-based vertical index falls in that layer interval
as visualized in Figure 4 and described in the next paragraph. If
𝑙 = 𝑙current we do nothing, and if 𝑙 > 𝑙current we do a full recompu-
tation of all coarsened matrices (in our framework, this happens
only when advancing to simulate a new design candidate, when 𝑙
is reset to 𝐿). Finally, we update 𝑙current = 𝑙 .

Our stiffnessmatrix coarsening is implemented recursively, which
makes it especially easy to surgically update only the portions of
the coarsened sparse block stiffness matrices cached at each level in
the MG hierarchy that have been invalidated by removing stiffness
from fine voxel layers [𝑙, 𝑙current). We iterate over the elements at
the coarsest level that overlap the updated fine layers and call our
sparse update routine on each. The sparse update routine is respon-
sible for (a) computing the coarsened per-element stiffness matrix
𝐾update due exclusively to the densities in layer update interval
[𝑙, 𝑙current) (i.e., pretending all other finest-level Young’s moduli are
identically zero); (b) subtracting 𝐾update from the values stored in
the hierarchy (accomplishing the required update); and (c) returning
𝐾update to the next-coarser element that called it. The update rou-
tine achieves (a) for coarse element 𝑒𝑐 by recursively calling itself
for each finer element 𝑒𝑓 nested within 𝑒𝑐 that overlaps [𝑙, 𝑙current),
coarsening the resulting stiffness matrices, and summing them
together.

4.2 Subspace Initialization
As an iterative method, our MGPCG solver can benefit greatly from
a good initial guess. One of our key insights is that, due to the small
change in geometry made when advancing from Ω (𝑙+1) to Ω (𝑙) ,
we expect the nodal displacements under self-weight of the partial
structure in Ω (𝑙) to be close to those of the previously simulated
structures in domains Ω (𝑙+1) ,Ω (𝑙+2) , and so on. Furthermore, we
expect this similarity to strengthen as the grid is refined to higher
resolutions.

Already simply taking the previous simulation result as the ini-
tial guess

(
u(𝑙)init = u(𝑙+1)

)
achieves a good speedup over the trivial

initialization u(𝑙)init = 0; we refer to these two initializations as “con-
stant” and “zero” in Section 5.3. A more powerful way to leverage
the valuable information obtained by the simulation of the previous
partial structures (𝑙 +1, · · · , 𝑙 +𝑁 ) is to construct the initial guess by
solving the self-weight simulation problem in the subspace spanned
by those previous 𝑁 solutions. In other words, we seek to minimize
the total potential energy of the simulation (the exact same energy
that the subsequent CG iterations effectively minimize) over the
span of those previous displacement fields, which we can collect
into the columns of a matrix𝑈 (𝑙) :=

[
u(𝑙+1) · · · u(𝑙+𝑁 ) ] . This

amounts to solving the dense system:[
𝑈 (𝑙)

]⊤
𝐾 (𝑙)𝑈 (𝑙)c =

[
𝑈 (𝑙)

]⊤
f (𝑙) , (5)

for coefficients c and constructing the initial guess u(𝑙)init = 𝑈
(𝑙)c. In

our experiments, only the most recent 𝑁 ≈ 4 simulations provide
useful information, so only a small upper-left block of this system

will be constructed and solved. However, to avoid the clutter of
block indexing notation in Section 4.3, we derive formulas for the
full system.

It turns out that for a uniform-density design and an isotropic
material𝐶base with Poisson’s ratio a = 0, our initial guess is actually
perfect for 𝑁 ≥ 2. This follows from the fact that the analytical
solution to (1) that can be obtained in this case—in both continuous
and discrete settings—is a linear function of structure layer height
𝑙 . Specifically, displacements parallel to the build platform are zero,
and the displacements along the gravity direction in the continuous
setting are given by 𝑢𝑦 (𝑥,𝑦, 𝑧) = ∥g∥

𝑌

(
1
2𝑦

2 − 𝑙𝑦
)
, where 𝑌 is the

Young’s modulus attenuated according to the density level. For
nonzero Poisson’s ratios and nonuniform densities, the guess is
imperfect but still gains an appreciable speedup.

To initialize the self-weight simulation of the full design candi-
date, we use the full-structure displacement field u(𝐿) computed
for the previous design candidate (under the previous 𝜌fem).

4.3 Fast Reduced System Construction
An initialization strategy is worthwhile only if it costs less than
the PCG iterations it displaces. While it is straightforward to con-
struct the reduced system matrix 𝐴(𝑙) :=

[
𝑈 (𝑙)

]⊤
𝐾 (𝑙)𝑈 (𝑙) and

right-hand-side vector b(𝑙) :=
[
𝑈 (𝑙)

]⊤
f (𝑙) with applications of

sparse matrix 𝐾 (𝑙) and several dense linear algebra operations,
for large 𝑁 , these operations can exceed the cost of the PCG it-
erations saved. We however observe that the close relationship
between the quantities of different partial structures can once again
be exploited to efficiently build 𝐴(𝑙) and b(𝑙) . In particular, the dif-
ferences �̃� (𝑙) := 𝐾 (𝑙) − 𝐾 (𝑙+1) and f̃ (𝑙) := f (𝑙) − f (𝑙+1) are both
highly sparse, containing nonzeros only for entries corresponding
to nodes of the voxels whose densities were voided by the removal
of layer (𝑙 + 1). This enables an efficient recursive construction at
significantly lower cost than one single PCG iteration:

b(𝑙) =
[
𝑈 (𝑙)

]⊤
f (𝑙+1) +

[
𝑈 (𝑙)

]⊤
f̃ (𝑙) =

[
u(𝑙+1) · f (𝑙+1)

b(𝑙+1)

]
+
[
𝑈 (𝑙)

]⊤
f̃ (𝑙) ,

𝐴(𝑙) =
[
𝑈 (𝑙)

]⊤
𝐾 (𝑙+1)𝑈 (𝑙) +

[
𝑈 (𝑙)

]⊤
�̃� (𝑙)𝑈 (𝑙)

=

[
𝑎
(𝑙)
00

[
a(𝑙)

]⊤
a(𝑙) 𝐴(𝑙+1)

]
+
[
𝑈 (𝑙)

]⊤
�̃� (𝑙)𝑈 (𝑙) ,

𝑎
(𝑙)
00 := u(𝑙+1) · 𝐾 (𝑙+1)u(𝑙+1) = u(𝑙+1) · f (𝑙+1) − u(𝑙+1) · r(𝑙+1) ,

a(𝑙) :=
[
𝑈 (𝑙+1)

]⊤
𝐾 (𝑙+1)u(𝑙+1) =

[
𝑈 (𝑙+1)

]⊤
f (𝑙+1) −

[
𝑈 (𝑙+1)

]⊤
r(𝑙+1)

= b(𝑙+1) −
[
𝑈 (𝑙+1)

]⊤
r(𝑙+1) .

Wenote that r(𝑙+1) and u(𝑙+1) ·f (𝑙+1) are the residual and compliance
of simulation (𝑙 + 1) that have already been computed by the PCG
solver and when accumulating 𝐽LBL. All that must be computed are
the sparse products

[
𝑈 (𝑙)

]⊤
f̃ (𝑙) and

[
𝑈 (𝑙)

]⊤
�̃� (𝑙)𝑈 (𝑙) (which can

be done efficiently by iterating over only the fine elements whose
densities were voided) as well as 𝑁 dense dot products u( 𝑗) · r(𝑙+1)
for 𝑙 + 1 ≤ 𝑗 ≤ 𝑁 .
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Figure 5: Cut-cell solver validation: we study the number of PCG iterations on average for each layer simulation at different
relative residual tolerances (left) and grid resolutions (right). This analysis is performed for fixed designs: a uniform density
𝜌 = 0.6 design (top) and the non-uniform density design shown in the inset of Section 5.1 that is upscaled to higher resolution.

4.4 Incremental Gradient Calculation
In order to incorporate 𝐽LBL in a topology optimization, we need
its gradient:

[
𝜕𝐽LBL
𝜕𝜌fem

]
𝑒

=
1
𝐿

𝐿∑︁
𝑙=𝐿𝑒

[
𝜕𝐽 (𝑙)

𝜕𝜌fem

]
𝑒

=
1
𝐿

𝐿∑︁
𝑙=𝐿𝑒

(
u(𝑙)𝑒 · f0 −

1
2
𝑠 ′(𝜌fem [𝑒])u(𝑙)𝑒 · 𝐾0u(𝑙)𝑒

)
,

where 𝐿𝑒 is the index of the smallest partial structure containing
element 𝑒 . We note that density variable 𝜌fem [𝑒] has no influence
on the partial structures 𝑙 < 𝐿𝑒 since it and the corresponding
attenuated elasticity tensor are masked out by the cut-cell solver
applied for those structures (Section 4.1.1).

We compute this gradient efficiently by interleaving our layer
simulations with accumulating terms of the gradient (and objec-
tive) sums; immediately after u(𝑙) is computed, we evaluate the 𝑙 th
term and accumulate it to the running total. This way no additional
memory storage is needed for gradient calculation. The computa-
tional cost of gradient and objective evaluation is also essentially

negligible with this approach (typically accounting for less than 1%
of the full optimization time).

5 EVALUATION
Our accelerated printability term can be included in any topology
optimization regardless of the physics or goals involved. However,
for simplicity, we evaluate the term in the most popular context of
compliance minimization under prescribed loads. We perform the
optimization:

min
p
𝐽main (F (p)) +𝑤𝐽LBL (F (p))

s.t.
∑︁
𝑒

𝜌fem [𝑒]Vol(𝑒) ≤ 𝑉max,
(6)

where𝑤 is a user-tunable weight trading off between the primary
design objective and the goal of ensuring robust layer-by-layer
fabricability, and 𝐽main is the compliance computed by solving (3)
with the self-weight boundary conditions replaced by user-specified
ones. We use the MMA algorithm for optimization [Svanberg 2007],
which is known to scale well to the large numbers of variables
involved in topology optimization.

Our solver is implemented in C++ with parallelization via tbb
[Intel 2022] and vectorization using Eigen [Guennebaud et al. 2010].
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Figure 6: Dependence of the optimal design on layer-by-layer term weight 𝑤 for three different design problems (whose
boundary conditions are illustrated by inset schematics). The upper-left design problemwas optimized at resolution 256×64×16,
right at 512 × 256 and bottom at 512 × 128. For these examples we used 𝑁 = 3 and a residual tolerance of 10−5.

We perform our experiments on a single Linux workstation with an
AMD Ryzen 5950X CPU and 128GB RAM, however they could have
been achieved with considerably less memory; at 256×128×128, our
full solver and topology optimization framework occupies under
4GB RAM.

5.1 Cut-Cell MGPCG Validation
To validate the convergence behavior of our cut-cell MGPCG solver,
we recorded the number of PCG iterations needed to drive the norm
of the residual (force imbalance) below a certain tolerance threshold
(relative to the norm of the applied force) in each layer simulation.
We did this both for a fixed uniform
density design with 𝜌 = 0.6 and for the
non-uniform density shown in the in-
set that we upscaled to each grid tested.
We plot in Figure 5 the average num-
ber of PCG iterations spent for each
layer simulation when initialized from
u(𝑙)init = 0 and from our subspace search
initialization introduced in Section 4.2
with 𝑁 = 3. We note that our cut-cell solver is able to drive down
the residual significantly faster when greater accuracy is needed,
particularly in the non-uniform density case; this is in addition
to the fact that our cut-cell solver also does roughly half the work
per iteration by skipping calculations for detached nodes. We also
observe that the number of PCG iterations needed per layer actually
decreases with increased resolution when using our cut-cell solver
paired with our subspace initialization since the layer simulation
problems become more and more similar under refinement; this
beneficial property is of course lost with a poor initialization (the
best we can hope for in general is the number of MGPCG iterations
remaining constant under grid refinement), but our cut-cell solver
still converges faster from u(𝑙)init = 0.

5.2 Weight Dependence
In Figure 6, we demonstrate the effect of changing the weight𝑤 on
optimal designs minimizing (6). To prevent the MMA optimization
from descending toward a different local optimum in the noncon-
vex objective landscape and obscuring the trend, we initialize the
optimization under each weight choice with the output from the

next-lower weight. We note that even at low weight, the term is
effective at inserting support struts for unprintable overhangs in
the examples at the top-left and right; these struts are subsequently
thickened as the weight is further increased. We also observe that
the shallower overhang angles present in the𝑤 = 0 design for the
MBB beam example (bottom row) is automatically eliminated by
the layer-by-layer term without the need for geometric heuristics,
and a highly robust, organic design emerges at weight𝑤 = 20.

5.3 Initial Guesses in Design Optimization
We study the PCG iteration reduction and speedup achieved by
our initial guesses across the constantly-changing designs encoun-
tered during topology optimization using 50 design iterations and
weight 𝑤 = 10 for 𝐽LBL. First we run the optimization using the
full-resolution, voxel-level (𝐿 = 𝑁𝑦) layer-by-layer objective using
various initialization strategies and solver accuracies. Representa-
tive results are shown in Figure 7; we found essentially identical
trends across different settings for 𝑠min spaced from 10−4 to 10−7
and different boundary conditions. We note that our initialization
achieves a significant speedup over a zero-initialization (≈ 8× fewer
PCG iterations at looser tolerances) and maintains a meaningful
lead over the “constant” approach of picking u(𝑙)init = u(𝑙+1) across
all residual tolerances. We also demonstrate the trade-off between
reducing the residual tolerance used to evaluate 𝐽LBL and the de-
sign’s robustness by plotting 𝐽LBL re-evaluated at full-resolution
and high accuracy for the final design generated by each run on
the right. In particular, we observe the relative tolerance has no
significant effect on final layer-by-layer objective until dropping
below 10−1, suggesting that lowering the residual tolerance is a
viable strategy for dramatically reducing computational expense.

One obvious way to accelerate the layer-by-layer simulation is
to solve it at a lower resolution than the density field representa-
tion and 𝐽main evaluation, applying (potentially multiple levels of)
2-1 downsampling. We demonstrate that this strategy is mostly
orthogonal to our contributions in Figure 8, showing that our ini-
tializations provide consistent reduction in solver iterations and
computational expense atop the acceleration due to downsampling.
We note that the 3D optimization grid started coarse to begin with
(64× 64× 64) and coarsening with 6 levels of downsampling would
have left no room for improvement by our initializations (having
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Figure 7: Convergence rate under various initial guesses of the full-resolution voxel-level layer-by-layer term incorporated in
a 2D (top) and 3D (bottom) topology optimization. On the right, the robustness of the final design is assessed by accurately
re-evaluating 𝐽LBL to high accuracy (at CG tolerance 10−12).
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Figure 8: Convergence rate under various initial guesses of the downsampled voxel-level layer-by-layer term incorporated in a
2D (top) and 3D (bottom) topology optimization.

reached a resolution of 1 × 1 × 1). Furthermore, well before this
coarse of a resolution, 𝐽LBL loses meaning.

Likewise, one can reduce the number of simulations run by skip-
ping layers, at the risk of potentially missing unprintable features;

this was the strategy used by [Allaire et al. 2017] and [Haveroth et al.
2022]. We demonstrate the performance of our initial guesses in this
mode and the final design robustness in Figure 9. Once again our
initializations consistently provide improvement, though naturally
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Figure 9: Convergence rate under various initial guesses of the full-resolution layer-by-layer term with layer skipping incorpo-
rated in a 2D (top) and 3D (bottom) topology optimization.

the benefit is diminished due to the decreased similarity between
u(𝑙) and u(𝑙+i) for large layer increments 𝑖 . Of course, when this
strategy is employed, unprintable features below the length-scale
of the layer increment can become invisible to the simulation.

5.4 High Resolution Design
In Figure 10, we demonstrate the resolution of 3𝐷 designs that
can be achieved in a few hours on a standard desktop workstation
thanks to our accelerations. In both cases, we use our 𝑁 = 3 initial-
ization and run 50 iterations of the design optimization. The design
at the top half was generated at resolution 256 × 128 × 128 and
used a residual tolerance of 10−2 for the PCG solves. This entire
process took 53 minutes. The design on the bottom was generated
at resolution 512 × 128 × 32. This time a much stricter residual
tolerance was used (10−5) to illustrate that our framework still has
acceptable performance at this accuracy level. This optimization
took 171 minutes, but we note that according to the scaling behav-
ior shown in Figure 7 we should expect a runtime of roughly 4×
lower at a residual tolerance of 10−2.

6 CONCLUSION
We conclude with some observations on limitations of our solver
and opportunities for future work. First, we have noticed that while
our initial guesses tend to be particularly excellent for the solid
regions, they have difficulty accurately predicting the deformation
of void nodes, which our MGPCG solver then takes substantial
time to correct. We suspect that this is related to conditioning prob-
lems caused by the high contrast ratio between stiffnesses assigned
to the solid and void regions (1/𝑠min). We plan to study this is-
sue in future work and potentially develop better contrast-aware

Figure 10: Topology optimizations of designs on grids of size
256× 128× 128 (top) and 512× 128× 32 (bottom). The boundary
conditions used in design are shown in the inset schematics.
The designs on the left were generated without 𝐽LBL and
feature unprintable overhangs that are removed by 𝐽LBL.

coarsening operators that we conjecture will further accelerate the
solves. Second, at high weight, the layer-by-layer objective term
causes convergence issues in the optimality criteria (OC) method,
which otherwise performs excellently for compliance minimization
under a volume constraint. For this reason, we used the MMA algo-
rithm for all results in this paper, but we would like to study this
phenomenon in more depth and possibly develop a more robust
variant of the OC algorithm. Third, we are interested to consider
other physics at play during the fabrication process, like the peeling
forces applied during stereolithography printing or thermal stresses
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in laser sintering. Fourth, we are excited to extend our acceleration
strategies to address general staged construction schemes, where
incremental parts can feature curved boundaries, and worst-case
load formulations. Finally, we would like to explore the behav-
ior of the layer-by-layer objective in more settings: for a greater
range of boundary conditions, different primary objectives, and in
multiphysics problems.

We believe that with our fast solver, high-quality, inexpensive ini-
tialization scheme, and demonstration of resilience to loose residual
tolerance, we have shown the layer-by-layer simulation approach
is viable for ensuring robust manufacturability in realistic-scale
topology optimization problems.
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