
CS171 Recitation 2
Wireframe Renderer

Julian Panetta

Sunday, January 24, 2010

Renderer Overview

• OpenInventor Parser

• Point Transformation and Projection

• Line Rasterizer

Sunday, January 24, 2010

OpenInventor Language
PerspectiveCamera { # Sets up Camera location, field of view, etc.
 position 0 0 1
 orientation 0 0 1 0
 nearDistance 1
 farDistance 10
 left -1
 right 1
 top 1
 bottom -1
 }
 Separator {
 Transform {
 translation tx ty tz # 3 real numbers
 rotation axisX axisY axisZ angle
 scaleFactor sx sy sz # 3 real numbers
 } # end of Transform

 # Creates list of 3D pts, named with integers starting at 0
 Coordinate3 {
 point [
 x0 y0 z0,
 ...
 xn yn zn
]
 }

 # Uses the integer names of the pts to make polygonal faces
 IndexedFaceSet {
 coordIndex [
 face0point0, face0point1, ... -1,
 face1point0, face1point1, ... -1,
 ...
 faceNpoint0, faceNpoint1, ... -1
]
 }
 }

Sunday, January 24, 2010

Camera Block

• One camera for the entire scene:

PerspectiveCamera {
 position 0 0 1
 orientation 0 0 1 0
 nearDistance 1
 farDistance 10
 left -1
 right 1
 top 1
 bottom -1
}

Sunday, January 24, 2010

Separator Block

• Organizes all geometry undergoing the same
transformation

separator {
Transform { }
Coordinate3 { }
IndexedFaceSet {}

}

Sunday, January 24, 2010

Transform Block(s)

Transform {

 translation tx ty tz
 rotation axisX axisY axisZ angle
 scaleFactor sx sy sz
}
...

Sunday, January 24, 2010

Coordinate3

Coordinate3 {

 point [
 x0 y0 z0,
 ...
 xn yn zn
]
}

Sunday, January 24, 2010

IndexedFaceSet

IndexedFaceSet {

 coordIndex [
 face0point0, face0point1, ... -1,
 face1point0, face1point1, ... -1,
 ...
 faceNpoint0, faceNpoint1, ... -1
]
}

Sunday, January 24, 2010

Transformations

Object ==> World ==> Camera ==> NDC

Sunday, January 24, 2010

Transformations

• Construct matrix for each transform block

• Transformi = TiRiSi

• Remember: T, R, S can appear in any
order (or not at all!)

• Combine all of the separator’s transforms:

• O = Transform0 * Transform1 * ...

• (First transform is applied last)

Object ==> World

Sunday, January 24, 2010

Transformations

• Use position and orientation from the
PerspectiveCamera block to construct
Camera ==> World matrix, TR

• Camera transform is the inverse:

• C = (TR)-1=R-1T-1

• Use formulas for inverted translation/
rotation instead of inverting the matrix.

World ==> Camera

Sunday, January 24, 2010

Transformations

• All coordinates in [-1, 1]

• Perspective projection using parameters
from the PerspectiveCamera block

• After projection and homogenization, (x,
y) coordinates are used to draw lines.

• z is used in HW3 as a depth value

• Formula and derivation are linked from
the HW page

Camera ==> NDC

Sunday, January 24, 2010

Your Program

• wireframe xres yres

• (xres, yres are output image resolution)

• Read OpenIV file from stdin

• Write PPM image to stdout

• Test against the provided examples

Sunday, January 24, 2010

Plan
• Define an AST for the OpenInventor

Language

• (mostly complete) BNF given on the HW
page

• Write your parser (translate grammar into
Bison syntax)

• Add code to apply parsed transformation
to points and draw using your HW1
rasterization code

Sunday, January 24, 2010

Left/Right Recursion

singles:
 NUMBER
 {
 $$ = new list<double>;
 $$->push_back($1);
 }
 |
 singles COMMA NUMBER
 {
 $1->push_back($3);

 $$ = $1;
 }
 ;

singles:
 NUMBER
 {
 $$ = new list<double>;
 $$->push_back($1);
 }
 |
 NUMBER COMMA singles
 {
 $3->push_front($1);

 $$ = $3;
 }
 ;

Instead of

Use Left Recursion!

Sunday, January 24, 2010

